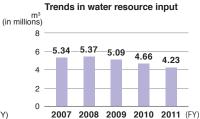
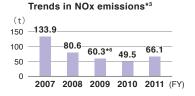
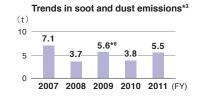
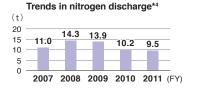
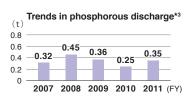

Trends in Major Environmental Indicators


Trends in the last five years \nearrow

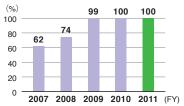

Trends in major environmental load indicators over the last 5 years are given below. Unless otherwise indicated, the totals include the whole of KUBOTA and its consolidated subsidiaries in Japan and overseas.







	F. 1	and the Paul Control	Units			Year		
	Environm	nental indicators	Units	FY2007	FY2008	FY2009	FY2010	FY2011
		Total energy input	PJ	9.78	9.62	9.84	8.49	8.50
INPUT		Water resource input	million m ³	5.34	5.37	5.09	4.66	4.23
INFUI		Amount of PRTR-designated substances handled*1	tons	8,533	8,751	6,621	5,507	5,277
		Amount of chemical substances handled*2	tons	_	_	_	_	2,667
		CO ₂ emissions	kiloton CO2e	552	536	575	478	445
		SOx emissions ^{⋆3}	tons	29.3	8.6	3.9*6	3.8	5.2
	Release into	NOx emissions ^{⋆3}	tons	133.9	80.6	60.3*6	49.5	66.1
	the atmosphere	Soot and dust emissions ^{★3}	tons	7.1	3.7	5.6*6	3.8	5.5
		Amount of PRTR-designated substances released*1	tons	631	580	574	475	389
		Amount of chemical substances released*2	kg	_	_	_	_	81
		Public water area						
		Wastewater discharge*5	million m ³	4.52	4.56	4.48	3.86	3.78
OUTPUT		COD load*4	tons	15.8	15.5	11.7	15.4	10.8
		Nitrogen discharge*4	tons	11.0	14.3	13.9	10.2	9.5
	Release into	Phosphorous discharge*3	tons	0.32	0.45	0.36	0.25	0.35
	water systems	Amount of PRTR-designated substances released*1	kg	151	166	40	33	35
		Sewage						
		Wastewater discharge*5	million m ³	0.85	0.73	0.90	0.99	0.94
		Amount of PRTR-designated substances released*1	kg	56	115	48	20	21
	\\/t-	Amount of waste discharge	kilotons	98	93	94	74	70
	Waste	Landfill waste	kilotons	6.0	7.0	10.2	3.6	4.3


^{*1:} Data for business sites in Japan.
*2: Data for overseas business sites. (uncovered by third-party assurance)

Environmental data on overseas business sites for FY2011 (excerpt)

Total amount of energy input Amount of waste discharge etc. CO₂ emissions Water resource input Groundwater Reduction 6% Fossil fuel Fossil fuel Amount of valuable materials (metals etc.) amount Total 1.30 PJ Total Total Total amount generated 70.3 kiloton CO₂e 0.437 million m³ (34 million liters) Water for industrial use 22.4 kilotons Electricity Amount for 44% 50% 69 68% landfill disposal

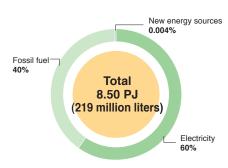
Coverage of corporate environmental management

All our domestic and overseas consolidated subsidiaries have been subject to environmental management since FY2010.

^{*3:} Data for overseas business sites is included from FY2011 onwards.

^{*4:} Data for up to FY2009 is total discharge from business sites in Japan covered by total emissions control. From FY2010 onwards, data from overseas business sites is included.

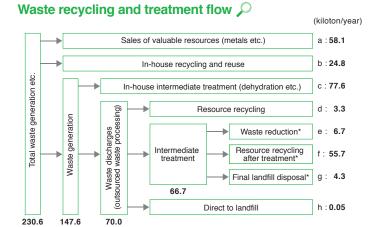
^{*5:} From FY2009 onwards, data from overseas business sites is included.
*6: Prior data was corrected.

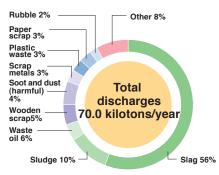

Data Concerning CO₂ Emissions

Trends in CO₂ emissions, and CO₂ emissions per unit of sales CO₂ emissions from non-energy sources (KUBOTA Group) CO₂ emissions (KUBOTA non-production sites and affiliates) CO₂ emissions (KUBOTA production plants) → CO₂ emissions per unit of consolidated net sales (FY2005=100) (KUBOTA Group) - CO₂ emissions per unit of sales (FY1991=100) (KUBOTA production plants) (kiloton CO2e) 2011 (FY)

- * Since FY2005, non-production sites and affiliates have been added to calculations.
- The number of applicable business sites is being gradually increased
- * CO₂ emissions per unit of sales = CO₂ emissions/sales (-- Consolidated net sales -- Non-consolidated net sales)

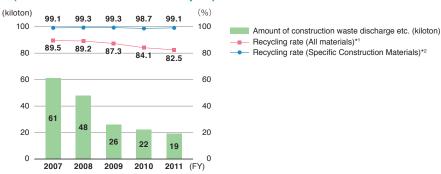
We have set ourselves a long-term target of reducing the KUBOTA Group's CO₂ emissions in Japan by 25% by FY2021 relative to the level of emissions for all KUBOTA production sites for FY1991 (544 kilotons).


Total energy inputs \wp


(Unit of heat PJ=1015J)

* In addition to the above, we also consumed electricity generated in-house by cogeneration (1.18 GWh).

Data Concerning Resource Recycling



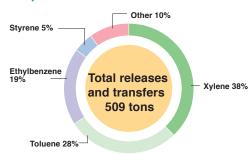
Breakdown of waste discharge

* The amounts of waste reduction, resource recycling after treatment and final landfill disposal were the result of surveys conducted by outside intermediate treatment companies.

Trends in the recycling of construction waste (Data for business sites in Japan)

- *1: Recycling rate (All materials) : Proportion of amount recycled in discharged amount of construction waste etc.
- *2: Recycling rate = (amount of valuable resources sold+amount reused+amount recycled+amount reduced (heat recovery))/ amount of construction waste discharge etc. (including amount of valuable resources sold) × 100 (%)

Results of PRTR Reporting/Groundwater Monitoring


Results of PRTR reporting for FY2011 (for substances for which the annual handling quantity equaled one ton or more (0.5 ton or more for Specific Class I designations) for each business site)

Unit: kg/year (Dioxins: mg-TEQ/year)

Number specified	Observation Institution		Relea	ases		Tran	sfers
in Cabinet Order	Chemical substance	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
1	Water-soluble zinc compounds	0.0	35	0.0	0.0	21	2,412
53	Ethylbenzene	76,116	0.0	0.0	0.0	0.0	19,803
71	Ferric chloride	0.0	0.0	0.0	0.0	0.0	0.0
80	Xylene	159,372	0.0	0.0	0.0	0.0	35,885
87	Chromium and chromium (III) compounds	0.0	0.0	0.0	0.0	0.0	13,180
132	Cobalt and its compounds	0.0	0.0	0.0	0.0	0.0	2.6
185	Dichloropentafluoropropane	0.0	0.0	0.0	0.0	0.0	3,650
188	N,N-Dicyclohexylamine	0.0	0.0	0.0	0.0	0.0	2,498
239	Organotin compounds	0.0	0.0	0.0	0.0	0.0	15
240	Styrene	23,152	0.0	0.0	0.0	0.0	0.0
243	Dioxins	0.0038	0.0	0.0	0.0	0.0	0.0
277	Triethylamine	168	0.0	0.0	0.0	0.0	0.0
296	1, 2, 4-trimethylbenzene	7,229	0.0	0.0	0.0	0.0	2,463
297	1, 3, 5-trimethylbenzene	1,763	0.0	0.0	0.0	0.0	199
300	Toluene	119,892	0.0	0.0	0.0	0.0	22,052
302	Naphthalene	1,402	0.0	0.0	0.0	0.0	828
305	Lead compounds	4.0	0.0	0.0	0.0	0.0	495
308	Nickel	0.0	0.0	0.0	0.0	0.0	395
349	Phenol	0.0	0.0	0.0	0.0	0.0	0.0
354	Di-n-butyl phthalate	0.0	0.0	0.0	0.0	0.0	38
392	n-Hexane	0.0	0.0	0.0	0.0	0.0	0.0
400	Benzene	2.7	0.0	0.0	0.0	0.0	0.0
411	Formaldehyde	273	0.0	0.0	0.0	0.0	0.0
412	Manganese and its compounds	0.0	0.0	0.0	0.0	0.0	12,770
438	Methylnaphthalene	0.0	0.0	0.0	0.0	0.0	0.0
448	Methylenebis (4, 1-phenylene) = diisocyanate	0.0	0.0	0.0	0.0	0.0	3,187
453	Molybdenum and its compounds	0.0	0.0	0.0	0.0	0.0	0.0
	Total	389,375	35	0.0	0.0	21	119,871

^{*} The data shows the total amount of the substances handled by: production sites of KUBOTA Corporation and its subsidiaries in Japan.

Proportion of release and transfer amounts in FY2011 by substance

Groundwater monitoring \nearrow

No contamination was detected as a result of groundwater measurements conducted on the premises of the business sites that used organic chlorine-based compounds in the past.

Business site	Substance	Measured groundwater value	Environmental standard value
Tsukuba Plant	Trichloroethylene	Non detected (Less than 0.0002mg/L)	0.03mg/L or less
Utsunomiya Plant	Trichloroethylene	Non detected (Less than 0.001mg/L)	0.03mg/L or less

[:] Volatile Organic Compound (VOC)

^{*}Since FY2011, following the revision of the PRTR Law, 8 substances have been newly designated as Class I Chemical Substances, and 3 substances have been removed. Three designated chemical substances derived from recycled resources have also been excluded from the totals.

Environmental Accounting (Data for Business Sites in Japan)

Environmental accounting is employed in order to reflect back into our business activities as much as possible the quantitative comprehension and analysis of the costs of environmental conservation and the effects that are obtained from those activities, and to promote a wider understanding of KUBOTA's participation in environmental conservation activities by disclosing information to internal and external stakeholders.

Environmental conservation costs

Investment in environmental conservation amounted to 740 million yen, down by 407 million yen from the previous year. Environmental expenses decreased by 40 million yen from the previous year to 7,998 million yen. Research and development expenses totaled 5,127 million yen, which accounts for about 64% of all the expenditures for the year.

Environmental conservation effects

As for effects relating to resources input, our use of water decreased from the previous year. As for effects relating to environmental load and waste output, our CO2 emissions, our release and transfer of PRTR-designated substances, and our waste discharge, all decreased from the previous year.

Economic effects

Our environmental conservation activities resulted in economic effects worth 1,486 million yen.

Environmental conservation costs \nearrow

(Yen in millions)

	Classifications	Main activities	FY2	010	FY2	FY2011	
	Classifications	Main activities	Investment	Expenses	Investment	Expenses	
Withi	n the business area		724	1,514	450	1,409	
	Local environmental conservation	Prevention of air and water pollution, soil contamination, noise, vibration, etc.	517	379	374	492	
	Global environmental conservation	Prevention of climate change	122	244	64	189	
	Resource recycling	Minimizing waste production, reducing quantity of waste, and recycling	85	891	12	728	
Upstre	eam and downstream costs	Collection of used products and commercialization of recycled products	0	23	0	19	
Manag	gement activities	Environmental management personnel, ISO maintenance and implementation, environmental information dissemination	50	1,235	26	1,238	
R&D		R&D for reducing of product environmental load and developing environment conservation equipment	373	5,005	264	5,127	
Social	activities	Local cleanup activities and membership fees and contributions to environmental groups, etc.	0	1	0	1	
Enviro	onmental remediation	Contributions and assessments, etc.	0	260	0	204	
	Total		1,147	8,038	740	7,998	

Total capital investment (including land) for the corresponding period (consolidated data)	24,000
Total R&D costs for the corresponding period	25,000

Environmental conservation effects

Effects	Items	FY2010	FY2011	Increase/Decrease	Ratio to the previous FY (%)
Environmental effect related to resources	Energy consumption [units of heat; in petajoules (PJ)]	7.25	7.20	-0.05	99
input into business activities	Water consumption (million m³)	4.26	3.79	0.47	89
	CO ₂ emissions (Energy related) (kiloton CO ₂ e)	406	369	-37	91
	SOx emissions (tons)	3.8	5.1	1.3	134
Environmental effect related to	NOx emissions (tons)	49.5	61.7	12.2	125
waste or environmental impact	Soot and dust emissions (tons)	3.8	4.4	0.6	116
originating from business activities	Releases and transfers of PRTR-designated substances (tons)	664	509	-155	77
	Waste discharge (kilotons)	64	60	-4	94
	Waste to landfills (kilotons)	1.0	0.9	0.1	90

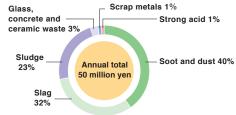
Economic effects \nearrow

(Yen in millions)

Classifications	Details	Annual effects
Factor concentration mass.	Improvement of combustion efficiency at cupola furnaces, switching to town gas as fuel for kerosene burners, etc.	508
Energy conservation measures	Improvements in load efficiency and a reduction of transportation distances in physical distribution, carrying out vanning (container loading) within plant premises, etc.	22
Zero-emissions measures	Reducing the quantity of, and resource recycling of industrial waste	50
zero-emissions measures	Sales of valuable resources	906
Total		1,486

Environmental accounting principles

- 1) The period covered spans from April 1, 2010 to March 31, 2011.
- 2) The data of business sites in Japan are considered in the calculation.
- 3) Data was calculated referring to the Environmental Accounting
- Guidelines 2005, published by Japan's Ministry of the Environment. 4) "Expenses" includes depreciation costs.


 - Depreciation cost was calculated based on the standards applied to KUBOTA's financial accounting,
 - and assets acquired in and after 1998 were considered in the calculation.
 - "Management activities" and "R&D" costs include personnel expenses.
 - "Resource recycling" costs do not include costs incurred during disposal of construction waste at construction sites

The cost of "R&D" represents that which was spent on environmental purposes, calculated on a pro-rata basis.

Effects of cost reduction through zero-emission \bigcirc (Data for business sites in Japan)

The reduction, reuse and resource recycling associated with waste contributed to lowered outsourcing fees for waste processing and generated an effect of 50 million yen in cost reductions for the year.

- 5) "Economic effects" are obtained only by adding up tangible results and do not include estimated effects.
- 6) Management activities costs for FY2010 were partially erroneous, so these have been amended.

Conversion Coefficient concerning CO₂

Calculation of CO₂ emissions

Heat conversion coefficients

Fuel: Coefficients are used from the "Table of heat generation by energy source" (revised on March 30, 2001) In and before FY2005

(Agency for Natural Resources and Energy).

Electricity: 9.83 MJ/kWh is used from the "Enforcement ordinance of Law Concerning the Rational Use of Energy"

(revised on December 27, 2002).

From FY2007 to FY2009 Coefficients are used from the "Enforcement ordinance of Law Concerning the Rational Use of Energy" (revised on March 29, 2006).

From FY2010 to FY2011 Coefficients are used from the "Enforcement ordinance of Law Concerning the Rational Use of Energy" (revised on March 31, 2009).

CO₂ emission coefficients

In FY1991 It is calculated using the formula below.

Carbon dioxide (ton CO_2) = carbon equivalent (ton C) × 3.664

And coefficients are used from the "Report on survey on carbon dioxide emissions" (1992, Environment Agency).

In FY2005 Coefficients are used from the "Guidelines for Calculating Greenhouse Gas Emissions from Businesses"

(draft Ver.1.5) (July 2003, Ministry of the Environment)

From FY2007 to FY2008 Fuel: Coefficients are used from the "Department regulation concerning calculation of greenhouse gas emissions from the business

activities of the specified polluters" (March, 2006; the third department regulation of Ministry of Economy, Trade and Industry and

Ministry of the Environment).

Electricity: Coefficients are used from the Department regulation above and emission coefficients by electricity supplier for domestic values. For calculating overseas emissions, coefficients are used from the "Report on estimated survey on carbon dioxide emissions per unit electric generation in electric generation divisions in each country-Ver.3" (June 2006, The Japan Electrical Manufacturers' Association).

In FY2009 Utilizes the coefficients stipulated in the "Manual for Calculation and Report of Greenhouse Gas Emissions" (Ver. 2.4)

(March 2009, Ministry of the Environment and Ministry of Economy, Trade and Industry).

Electricity: Emission coefficients published by electricity suppliers are used for calculating domestic emissions.

For calculating overseas emissions, coefficients are used from the "Report on estimated survey on carbon dioxide emissions per unit electric generation in electric generation divisions in each country-Ver.3" (June 2006, The Japan Electrical Manufacturers' Association).

From FY2010 to FY2011 Coefficients are used from the "List of calculation methods and emission coefficients for calculating, reporting,

and disclosure systems" (revised in March 2010) (Ministry of the Environment and Ministry of Economy, Trade and Industry). Electricity: The above emission coefficients and those published by electricity suppliers are used for calculating domestic emissions. For calculating overseas emissions, emission coefficients of the respective countries published in the Greenhouse Gas Protocol Initiative

Targeted area of calculation of CO₂ emissions

- Only plants and factories of KUBOTA are targets in FY1991. Non-production sites and affiliates also become the targets in and after FY2005. The number of targeted business places is increasing.
- Beginning from the CSR Report 2008, CO₂ emissions from the Residential Housing Materials Division, which was spun off from the KUBOTA Group into a separate company in December 2003, are excluded from the KUBOTA Group's total CO2 emissions. Accordingly, the amount of CO2 emissions during FY1991 shown in this report is smaller than the amount disclosed in the past.
- Greenhouse gases other than energy-originated carbon dioxide are newly added to calculation in and after FY2007. But the values which were calculated in and before FY2006 are not recalculated.

*Beginning from 2007, emissions for the period from January to December are shown for HFC, PFC, and SF6.

Calculation of CO₂ emissions during distribution

CO₂ emissions per unit ton-kilometer in truck transportation

From FY2007 to FY2008 It is calculated using the values in the item of "energy consumption to carry a baggage of one metric ton in a distance of

one kilometer (in FY2006)" in the "Directory of energy relating to transportation for 2007" (Ministry of Land, Infrastructure and Transport).

■ From FY2009 to FY2011 CO₂ emissions are calculated using the improved ton-kilometer method stipulated in the "Manual for Calculation and Report of

Greenhouse Gas Emissions" (Ver. 2.4) (March 2009, Ministry of the Environment and Ministry of Economy, Trade and Industry). (CO₂ emissions = ton-kilometer transported x CO₂ emissions per ton-kilometer (calculated by the improved ton-kilometer method))

CO₂ emissions per unit ton-kilometer except for truck transportation

The values are used in the item of "carbon dioxide emissions per ton-kilometer of transportation by transport vehicle" in the "Manual for Calculation and Report of Greenhouse Gas Emissions" (Ver. 2.4) (March 2009, Ministry of the Environment and Ministry of Economy, Trade and Industry).

Scope of calculation of CO₂ emissions

Only KUBOTA Corporation non-consolidated is targeted in FY2005. Some subsidiaries and affiliates in Japan also become targets in and after FY2006.

Calculation Standards of Environmental Performance Indicators for the KUBOTA REPORT 2011 – Business and CSR Activities

Period covered
Organizations covered

April 1, 2010 to March 31, 2011, for data on business sites in Japan (January 1, 2010 to December 31, 2010 for data in other countries)

Organizations covered KUBOTA Corporation and its 68 consolidated subsidiaries in Japan and 36 consolidated subsidiaries in other countries

Calculation method The Environmental Reporting Guidelines 2007 (from Japan's Ministry of the Environment) were used as references. For specific details, refer to the following table.

Env	ironmental performance indicators	Unit	Calculation method
	CO ₂ emissions	kiloton CO₂e	Amount of electricity purchased x CO2 emission coefficient*1+\(\Sigma\) (amount of each fuel consumed x per-unit heat value of each fuel*1 x CO2 emission coefficient*1 of each fuel)+CO2 emissions from non-energy sources*2+non-CO2 greenhouse gas emissions*2
hange	CO₂ emissions per unit of sales (KUBOTA Group)	%	CO: emissions per unit of sales = total CO: emissions of KUBOTA Group/consolidated sales CO: emissions per unit of sales of each fiscal year/CO: emissions per unit of sales of FY2005 x 100 (%) (as shown in the graph on page 43 of the KUBOTA REPORT 2011 Business and CSR Activities)
nate C	CO ₂ emissions per unit of sales (KUBOTA production plants)	%	CO₂ emissions per unit of sales = total CO₂ emissions of KUBOTA production plants/sales of KUBOTA Corporation CO₂ emissions per unit of sales of each fiscal yearCO₂ emissions per unit of sales of FY1991 x 100 (%) (as shown in the graph on page 43 of the KUBOTA REPORT 2011 Business and CSR Activities)
흥	Freight shipping volume	ton km	Σ (Freight volume per shipment [ton] x distance traveled [km])
Stopping Climate Change	CO ₂ emissions during distribution	kiloton CO ₂	"Conversion coefficient concerning CO ₂ " as shown at http://www.kubota-global.net/csr/report/r2011.html The data of KUBOTA Corporation and consolidated production subsidiaries in Japan are considered in the calculation.
Sto	CO ₂ emissions during distribution per unit of sales	%	CO ₂ emissions during distribution/consolidated sales CO ₂ emissions per unit of sales of each fiscal year/CO ₂ emissions per unit of sales of FY2007 x 100 (%) (as shown in the graph on page 44 of the KUBOTA REPORT 2011 Business and CSR Activities)
>	Amount of waste discharge etc.	tons	Amount of valuable resources sold+amount of waste treated by outside contractors (Amount of waste discharge = recycling & reductions+landfill disposal)
Set	Amount of waste discharge	tons	Amount of waste treated by outside contractors = amount of industrial waste+amount of general waste from business
ပို	Amount of landfill disposal	tons	Amount of waste direct to landfill+amount of waste to final landfill after intermediate treatment
ig-base	Waste discharge per unit of sales	%	Waste discharge per unit of sales = amount of waste discharged/consolidated sales Waste discharge per unit of sales of each fiscal year/waste discharge per unit of sales of FY2005 (as shown in the graph on page 45 of the KUBOTA REPORT 2011 Business and CSR Activities)
ecyclin	Ratio of business sites that have achieved zero emissions goal	%	Number of business sites certified by Environmental Protection Department, KUBOTA Corporation as having achieved the zero emissions goal (landfill ratio 0.5% or less)/number of production sites (30 sites, excluding defunct sites) among the production sites included when the Medium-Term Environmental Conservation Plan was formulated x 100 (%)
ırds a B	Landfill ratio	%	(Amount of waste direct to landfill-amount of waste to final landfill disposal after intermediate treatmently[amount of valuable resources sold-amount of waste discharged) x 100 (% The data of KUBOTA Group's business sites in Japan are considered in the calculation in and after FY2010.
owa	Amount of construction waste discharge etc.	tons	Amount of construction waste discharge (including waste generated from construction other than specific construction materials) +amount of valuable resources (generated from construction) sold
Working towards a Recycling-based Society	Recycling rate of construction waste (all materials) Recycling rate of construction waste (specific construction materials)	%	Recycling rate of construction waste (all materials): Proportion of amount recycled in amount of construction waste discharge etc. Recycling rate of construction waste (specific construction materials) refers to the recycling rate of waste construction materials stipulated in the Construction Material Recycling Law. Recycling rate = (amount of valuable resources sold+amount reused+amount recycled+amount reduced (heat recovery)) /amount of construction waste discharge etc. (including amount of valuable resources odl) x 100 (%)
Chemical Substance Controls	Amount of PRTR-designated substances released and transferred	tons	Total release and transfer amount of the chemical substances designated as Class I under the Act on Confirmation, etc. of Release Amounts of Specific Chemical Substances in the Environment and Promotion of Improvements to the Management Thereof (the PRTR Law), whose total volume handled annually by each business site is one ton or more (or 0.5 ton or more in case of Specific Class I chemical substances). - Amount released – amount discharged to the atmosphere+amount discharged to public water area+amount discharged to soil+amount disposed of by landfill in the premises of the business site - Amount transferred = amount discharged to sewerage+amount transferred out of the business site as waste The amount of each substance released and transferred is calculated in accordance with the "Manual for Calculating the Quantity of Released
al Substa			Chemical Substance under the PRTR System" (Ver. 4.1) (March 2011, Ministry of the Environment and Ministry of Economy, Trade and Industry) and "The Japan Iron and Steel Federation PRTR Estimation Manual" (Ver. 10) (March 2011, Japan Iron and Steel Federation). The data of KUBOTA Group's business sites in Japan are considered in the calculation.
ij	Amount of PRTR-designated substances (VOCs) released	tons	Amount of VOCs (volatile organic compounds with a boiling point between -50°C and 260°C) released into the atmosphere, within the amount of PRTR-designated substances emitted
Che	PRTR-designated substance release and transfer per unit of sales	%	PRTR-designated substance release and transfer per unit of sales = amount of PRTR-designated substances released and transferred/consolidated sales PRTR-designated substance release and transfer per unit of sales of each fiscal year/PRTR-designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of the STR designated substance release and transfer per unit of sales of expensions of expensions of the STR designated substance release and transfer per unit of sales of expensions of expensi
	Total energy input	PJ	Amount of electricity purchased x per-unit of heat input*1+ \(\Sigma \) (amount of each fuel consumed x per-unit heat value of each fuel*1)
	Water resource input	million m ³	Total amount of service water, industrial water, and ground water consumed
Input	Amount of PRTR-designated substances handled	tons	Total amount of the chemical substances handled, which are designated as Class I under the PRTR Law and whose total volume handled annually by each business site is one ton or more (or 0.5 ton or more in case of Specific Class I chemical substances) The data of KUBOTA Group's business sites in Japan are considered in the calculation.
	Amount of chemical substances handled (overseas)	tons	Total amount of chemical substances handled by sites covered by the Toxics Release Inventory (TRI) Program, the US EPA, the European Pollutant Emission Register (EPER), the European Pollutant Release and Transfer Register (E-PRTR), Reporting to the National Pollutant Release Inventory (Canada) and other legislations. The data of KUBOTA Group's overseas business sites are considered in the calculation.
	Amount of SOx emissions	tons	Amount of fuel consumed (kg) x sulfur content in the fuel (on a weight basis: %)/100 x 64/32 x (1-desulphurization efficiency)/100, or amount of SOx emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 64/22.4 x 10³ Up to FY2010, the organizations included in this calculation are KUBOTA Group smoke and soot generating facilities in Japan as defined by the Air Pollution Control Law. From FY2011 onwards, overseas sites are included. (Facilities included: (1) burner combustion capacity of facilities using liquid fuel is 50 liters/hour or over (heavy oil equivalent); (2) combustion capacity of facilities using gas fuel is 80 m³/hour or over; (3) rated capacity of the transformers of facilities using electricity is 200 kVA (Kilovolt Amperes) or over.)
	Amount of NOx emissions	tons	NOx concentration (ppm) x 10° x amount of gas emitted per hour (m²N/h) x annual operation hours of the relevant facility (h) x 46/22.4 x 10³ Up to FY2010, the organizations included in this calculation are KUBOTA Group smoke and soot generating facilities in Japan as defined by the Air Pollution Control Law. From FY2011 onwards, overseas sites are included. (Facilities included: (1) burner combustion capacity of facilities using fliquid fuel is 50 liters/hour or over (heavy oil equivalent); (2) combustion capacity of facilities using gas fuel is 80 m³/hour or over; (3) rated capacity of the transformers of facilities using electricity is 200 kVA (Kilovolt Amperes) or over.)
Output	Amount of soot and dust emissions	tons	Soot and dust concentration (g/m³N) x amount of gas emitted per hour (m³Nh) x annual operation hours of the relevant facility (h) x 10° Up to FY2010, the organizations included in this calculation are KUBOTA Group smoke and soot generating facilities in Japan as defined by the Air Pollution Control Law. From FY2011 onwards, overseas sites are included. (Facilities included: (1) burner combustion capacity of facilities using liquid fuel is 50 liters/hour or over (heavy oil equivalent); (2) sites where the combustion capacity of facilities using gas fuel is 80 m³/hour or over; (3) rated capacity of the transformers of facilities using electricity is 200 kVA (Kilovolt Amperes) or over.)
	Amount of waste water discharge (to public water areas and through sewage)	million m³	Amount of waste water discharged to public water areas or through sewage The data of KUBOTA Group's business sites in Japan are considered in the calculation in and before FY2008, and the data of overseas business sites are included in the calculation in and after FY2009.
	Amount of COD and nitrogen discharge	tons	COD or nitrogen concentration (mg/L) x amount of waste water discharged to public water area (m³) x 10 st . The data of KUBOTA Group's business sites in Japan to which the total emission control standard is applied are considered in the calculation in and before FY2009. The data of overseas business sites are included in the calculation in and after FY2010.
	Amount of phosphorus discharge	tons	Phosphorus concentration (mg/L) x amount of waste water discharged to public water area (m²) x 10-6 The data of KUBOTA Group's business sites in Japan to which the total emission control standard is applied are considered. The data of overseas business sites are included in the calculation in and after FY2011.
_	Eco-efficiency indicator (CO ₂)	million yen/ton CO2e	Consolidated sales/amount of CO ₂ emitted by the KUBOTA Group
er	Eco-efficiency indicator (waste)	million yen/100kg	Consolidated sales/amount of waste discharged by the KUBOTA Group
Other	• • • • • • • • • • • • • • • • • • • •	million yen/100kg million yen/kg	

 $^{^{\}star}1: The\ conversion\ coefficient\ concerning\ CO_{2}\ is\ as\ shown\ in\ http://www.kubota-global.net/csr/report/r2011html$

^{*2:} The calculation uses the method stipulated in the Guidelines for Calculating Greenhouse Gas Emissions from Businesses (Ministry of the Environment).

Data on production sites

Data on KUBOTA production sites in Japan

	Item	Unit	Hanshin Plan	t (Mukogawa)	Hanshin Pla	nt (Amagasak) Keiyo Plant	(Funabashi)	Keiyo Plant	(Ichikawa)	Hirakata	a Plant	Okajima Bus	iness Center	Saka	i Plant	Sakai Rin	ıkai Plant	Utsunom	niya Plant	Tsukub	a Plant	Kyuhoji Business	s Center	Ryugasa	aki	Shiga Pla	ant
INPUT																												
			Volume of use	Heat conversion GJ	Volume of us	e Heat conversion (J Volume of use	Heat conversion G	Volume of use	Heat conversion GJ	Volume of use	Heat conversion G	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion G	J Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use Heat of	conversion GJ	Volume of use Hea	at conversion GJ	Volume of use Heat	t conversion GJ
_	Fossil fuel	Crude oil equivalent kL	15,177	588,239	4,878	189,06	22,941	889,195	60	2,341	4,876	188,973	5,385	208,716	3,568	138,279	2,588	100,301	1,664	64,485	4,829	187,152	256	9,919	270	10,450	692	26,812
Energy	Purchased pow		38,760	3,797,120	30,450	3,035,710	48,900	4,764,510	3,870	386,240	45,190	4,424,140	40,350	3,923,790	30,540	2,982,230	15,040	1,470,610	7,730	761,080	38,410	3,751,990	2,620	256,280	3,510	349,580	2,760	275,140
	Total	Crude oil equivalent kL	24,973	967,951	12,710	492,63	35,234	1,365,645	1,057	40,965	16,290	631,387	15,508	601,095	11,262	436,502	6,382	247,362	3,627	140,593	14,509	562,351	917	35,546	1,172	45,408	1,402	54,326
Water usage		1,000 m ³	76	67		193	1,	038	10)	17	1	9	2	1	20	59	9	25	52	19	95	13		13		91	
OUTPUT CO ² emission		ton CO ₂ -e	61,	456	18	3,409	97	270	1,60	35	23,0	134	31,	621	16	871	10,7	716	6,5	574	25,:	358	1,319		1,872	2	2,148	
	Volume of discha	rge metric tons	11,3	377	3	,765	17	366	13	5	3,6	22	14,	965	1.	037	79	95	30	03	2,2	232	80		127		226	
Waste	Landfill ratio	%	0.	.5		0.1	(.3	0.2	2	1.0	6	0	1		.4	1.	.1	1	.2	0.	.2	4.2		0.3		0.1	
	Main smo	oke and soot	Melting f	urnaces	Heating	g furnaces	Melting	furnaces	_		Heating f	urnaces	Melting	urnaces	Drying	urnaces	_	_	Boi	lers	Boi	lers	_		Boilers	s	Boilers	
	generati	ng facilities Unit	Control content Contro	I value Measurement	Control content Con	trol value Measureme	nt Control content Contr	ol value Measuremen	t Control content Control	value Measurement	Control content Control	value Measuremen	Control content Control	I value Measurement	Control content Cont	ol value Measurement	Control content Control	I value Measurement	t Control content Contro	l value Measurement	Control content Control	I value Measurement	Control content Control value	Measurement	Control content Control valu	ue Measurement	Control content Control valu	ue Measurement
		al emission control and K-value control: m ³ Wh	K-value control 0	.22 0.002		wn gas with ur content	Total emission control	19.3 0.35			* Use of towi		Total emission control 2.	859 0.193	Total emission control 1	615 0.008			* Use of tow zero sulfu		K-value control 1	7.5 0.04			* Use of town g		* Use of town g	
Exhaust gas	NOs Co	Total emission control: m³Wh, ncentration control: ppm	Total emission control 2	4.2 4.5	Total emission control	2.24 0.48	Total emission control	41.3 5.9	No smoke soot gene facilities		Total emission control 8.9	0.483	Total emission control	2.4 0.581	Total emission control 1	661 0.332	No smoke soot gene facilities		Concentration control	150 39	Concentration control	230 100	No smoke an soot generati facilities	ing	Concentration control 230	0 48	Concentration control 180	0 27
	Soot and dust	g/m³N	Concentration control	0.1 0.0013	Concentration control	0.1 0.001	Concentration	0.1 0.0037			Concentration control	0.1 0.007	Concentration	.05 0.006	Concentration	0.1 0.025			Concentration control	0.1 0.001	Concentration control 0	.25 0.01		C	Concentration control 0.2	Less than	_ _	_

^{*} Total emission control: Control value or agreed value by plant and the measurement value of major facilities
* K-value control and concentration control: Control and measurement values of major facilities

				Control value	Measurement																								
		pH	-	5.8-8.6	7.1	_	-	5-9	7	5-9	6.9	5.8-8.6	7.2	_	-	_	-	5.8-8.6	6.5	5.8-8.6	7.3	5.8-8.6	7.8	-	_	_	_	6.0-8.5	7.9
		BOD	mg/L	30	5	_	_	_	_	60	4.5	25	5.4	_	-	_	-	30	1.4	25	9.9	20	2.7	_	_	_	_	30	1
		COD	mg/L	20	6	_	_	20	2	60	7.8	25	4.9	_	-	_	-	30	11.6	-	-	20	8.1	_	_	_	_	30	2
		Nitrogen	mg/L	120	6.1	_	_	20	3.1	70	5.8	120	3.5	-	_	_	_	120	14.8	-	_	60	10.3	_	_	-	_	8	_
	Public	Phosphorus	mg/L	16	0.2	_	_	2	0.1	7	0.7	16	0.4	_	-	_	-	16	2.3	-	_	8	1	_	_	_	_	0.8	_
	areas	Hexavalent chromium	mg/L	0.35	ND	_	_	0.05	ND	0.5	ND	0.05	ND	-	-	_	-	0.5	ND	0.1	-	0.5	ND	-	-	_	_	0.05	ND
Drainage		Lead	mg/L	0.1	ND	-	_	0.1	ND	0.1	ND	0.01	ND	-	-	-	-	0.1	ND	0.1	-	0.1	ND	-	-	_	_	0.1	ND
		Regulation value of COD volume	kg/day	97.5	12.3	_	_	110.5	14.0	3.87	0.22	38.0	2.02	_	-	_	_	2.03	0.79	_	_	_	_	_	_	_	_	_	_
		Regulation value of nitrogen volume	kg/day	40.5	14.0	_	_	114.7	9.1	3.11	0.15	38.3	2.11	_	_	_	_	8.14	1	_	_	-	_	_	_	_	_	_	_
		Regulation value of phosphorus volume	kg/day	1.4	0.5	_	_	11.65	0.13	0.41	0.017	4.4	0.19	_	-	_	_	1.09	0.11	_	_	-	_	_	_	-	_	_	_
		pH	-	5.7-8.7	7.7	5.7-8.7	7.6	_	_	-	_	_	_	5.7-8.7	6.7	5.7-8.7	7.2	_	_	_	_	-	_	5.7-8.7	7.8	5-9	6.9	_	_
	•	BOD	mg/L	300	7	300	1	_	_	-	_	_	_	600	23	300	138	_	_	_	_	_	_	300	2	600	51	_	_
	Sewerage	COD	mg/L	_	_	_	_	-	_	_	_	-	_	_	-	_	99	_	_	-	-	_	_	_	_	600	70	_	_
		SS	mg/L	300	5	300	9	-	_	-	_	-	-	600	31	300	24	_	_	-	-	-	_	300	ND	600	54	_	-

Results of PRTR Reporting Unit: kg/year

		Number specified	ı	Released	d amoun	t	Trans amo		
Site name	Substance name	in Cabinet Order	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site	
	Ethylbenzene	53	5,452	0.0	0.0	0.0	0.0	61	
	Xylene	80	7,974	0.0	0.0	0.0	0.0	90	
	Triethylamine	277	0.0	0.0	0.0	0.0	0.0	0.0	
Hanshin Plant	1, 2, 4-trimethylbenzene	296	2,607	0.0	0.0	0.0	0.0	0.0	
(Mukogawa)	Toluene	300	16,173	0.0	0.0	0.0	0.0	1,547	
	Nickel	308	0.0	0.0	0.0	0.0	0.0	206	
	Phenol	349	0.0	0.0	0.0	0.0	0.0	0.0	
	Methylenebis(4,1-phenylene) = diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0	
	Ethylbenzene	53	10,192	0.0	0.0	0.0	0.0	8.0	
Hanshin Plant	Xylene	80	25,354	0.0	0.0	0.0	0.0	11	(E
(Marushima)	Toluene	300	23,285	0.0	0.0	0.0	0.0	199	(L
	Nickel	308	0.0	0.0	0.0	0.0	0.0	158	Ke
	Chromium and chromium (III) compounds	87	0.0	0.0	0.0	0.0	0.0	351	
	Toluene	300	2,081	0.0	0.0	0.0	0.0	0.0	
Hanshin Plant (Amagasaki)	Nickel	308	0.0	0.0	0.0	0.0	0.0	0.3	
(Amagasaki)	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	5,821	
	Molybdenum and its compounds	453	0.0	0.0	0.0	0.0	0.0	0.0	1
	Ethylbenzene	53	944	0.0	0.0	0.0	0.0	0.0	
Hanshin Plant	Xylene	80	1,401	0.0	0.0	0.0	0.0	0.0	
(Nagasu)	Toluene	300	1,408	0.0	0.0	0.0	0.0	0.0	

Cito nomo		specified		Released	t	amount			
Site name	Substance name	in Cabinet Order	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site	
	Ethylbenzene		18,483	0.0	0.0	0.0	0.0	366	
	Xylene		26,341	0.0	0.0	0.0	0.0	492	
	Triethylamine		0.0	0.0	0.0	0.0	0.0	0.0	
Keiyo Plant	1, 2, 4-trimethylbenzene		2,191	0.0	0.0	0.0	0.0	6.0	
(Funabashi)	Toluene		59,234	0.0	0.0	0.0	0.0	917	
	Nickel		0.0	0.0	0.0	0.0	0.0	23	
	Phenol		0.0	0.0	0.0	0.0	0.0	0.0	
	Methylenebis (4, 1-phenylene)=diisocyanate		0.0	0.0	0.0	0.0	0.0	0.0	
	Ethylbenzene		7,263	0.0	0.0	0.0	0.0	148	
Keiyo Plant (Distribution Center)	Xylene		27,413	0.0	0.0	0.0	0.0	560	
(Distribution Center)	Toluene		8,473	0.0	0.0	0.0	0.0	173	
Keiyo Plant (Ichikawa)	Manganese and its compounds		0.0	0.0	0.0	0.0	0.0	43	
	Ethylbenzene		743	0.0	0.0	0.0	0.0	14,527	
	Xylene		1,439	0.0	0.0	0.0	0.0	24,474	
	Chromium and chromium (III) compounds		0.0	0.0	0.0	0.0	0.0	11,942	
	Cobalt and its compounds		0.0	0.0	0.0	0.0	0.0	2.6	
Hirakata Plant	1, 2, 4-trimethylbenzene		86	0.0	0.0	0.0	0.0	1,706	
	Toluene		1,198	0.0	0.0	0.0	0.0	17,211	
	Nickel		0.0	0.0	0.0	0.0	0.0	7.2	
	Manganese and its compounds		0.0	0.0	0.0	0.0	0.0	5,389	
	Molybdenum and its compounds		0.0	0.0	0.0	0.0	0.0	0.0	

		Number specified	ı	Released	d amoun	ıt	Transf amo	ferred ount
Site name	Substance name	in Cabinet Order	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
	Ethylbenzene		172	0.0	0.0	0.0	0.0	57
	Xylene		1,362	0.0	0.0	0.0	0.0	454
	Chromium and chromium (III) compounds		0.0	0.0	0.0	0.0	0.0	888
	Triethylamine		168	0.0	0.0	0.0	0.0	0.0
Okajima	1, 2, 4-trimethylbenzene		1,989	0.0	0.0	0.0	0.0	663
Business	1, 3, 5-trimethylbenzen		597	0.0	0.0	0.0	0.0	199
Center	Phenol		0.0	0.0	0.0	0.0	0.0	0.0
	Formaldehyde		273	0.0	0.0	0.0	0.0	0.0
	Manganese and its compounds		0.0	0.0	0.0	0.0	0.0	1,517
	Methylenebis (4, 1-phenylene) =diisocyanate		0.0	0.0	0.0	0.0	0.0	3,187
	Water-soluble zinc compounds		0.0	0.0	0.0	0.0	21	1,292
	Ethylbenzene		2,695	0.0	0.0	0.0	0.0	262
	Xylene		3,410	0.0	0.0	0.0	0.0	665
Sakai Plant	1, 2, 4-trimethylbenzene		356	0.0	0.0	0.0	0.0	88
	Toluene		1,337	0.0	0.0	0.0	0.0	288
	Methylnaphthalene		0.0	0.0	0.0	0.0	0.0	0.0
	Ethylbenzene		63	0.0	0.0	0.0	0.0	91
Onlesi Dialesi	Xylene		191	0.0	0.0	0.0	0.0	212
Sakai Rinkai Plant	Toluene		261	0.0	0.0	0.0	0.0	232
i idiit	Benzene		2.7	0.0	0.0	0.0	0.0	0.0

		Number specified	ı	Released	d amoun	ıt	Trans	ferred ount
Site name	Substance name	in Cabinet Order	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
	Water-soluble zinc compounds	1	0.0	7.8	0.0	0.0	0.0	410
	Ethylbenzene	53	6,911	0.0	0.0	0.0	0.0	3,720
	Xylene	80	10,101	0.0	0.0	0.0	0.0	5,434
Utsunomiya	1, 2, 4-trimethylbenzene	296	0.0	0.0	0.0	0.0	0.0	0.0
Plant	Toluene	300	357	0.0	0.0	0.0	0.0	192
	Naphthalene	302	1,402	0.0	0.0	0.0	0.0	828
	N-hexane	392	0.0	0.0	0.0	0.0	0.0	0.0
	Water-soluble zinc compounds	1	0.0	27	0.0	0.0	0.0	710
	Ethylbenzene	53	20,514	0.0	0.0	0.0	0.0	436
Tsukuba Plant	Xylene	80	44,247	0.0	0.0	0.0	0.0	3,311
ISUKUDA FIAIIL	Dichloropentafluoropropane	185	0.0	0.0	0.0	0.0	0.0	3,650
	1, 3, 5-trimethylbenzen	297	1,166	0.0	0.0	0.0	0.0	0.0
	Toluene	300	1,771	0.0	0.0	0.0	0.0	438
	Ethylbenzene	53	1,691	0.0	0.0	0.0	0.0	73
Ryugasaki Plant	Xylene	80	2,313	0.0	0.0	0.0	0.0	82
	Toluene	300	1,505	0.0	0.0	0.0	0.0	432
	Styrene	240	23,152	0.0	0.0	0.0	0.0	0.0
Shiga Plant	Di-n-butyl phthalate	354	0.0	0.0	0.0	0.0	0.0	38
	Methylenebis (4, 1-phenylene) =diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0

50-11

Data on KUBOTA Group Production Sites

Data on KUBOTA Group production sites in Japan

ا	tem	Unit	KUBOTA-	C.I. (Sakai)	KUBO (Oda	TA-C.I. wara)	кивота-с	.l. (Tochigi)	KUBOTA Air (Toc	Conditioner higi)	KUB Precision	OTA Machinery	Nippon Plas (Head Offic	stic Industry e and Plant)	Kyushu Cher	KUBOTA nical
INPUT																
			Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ
Energy	Fossil fuel	Crude oil equivalent kL	64	2,470	125	4,833	161	6,242	252	9,764	710	27,502	60	2,344	4	171
	Purchased power	MWh	11,280	1,101,400	28,200	2,733,290	17,810	1,727,320	2,270	225,970	12,700	1,233,930	11,050	1,063,810	7,340	706,360
	Total	Crude oil equivalent kL	2,905	112,611	7,177	278,162	4,618	178,974	835	32,360	3,893	150,895	2,805	108,725	1,827	70,806
Water usage		1,000 m³	1	3	6	4	26	61	7	3	1	3	9	9		i

ОИТРИТ																								
CO ₂ emission			ton CO ₂ -e		5,009			11,087	7		7,267			1,380			5,116			5,367			2,720	
Waste	Volume of dis	charge	metric tons		31			56			127			138			402			21			25	
waste	Landfill ra	atio	%		0.3			0.1			0.1			1.3			0.2			1.1			0.0	
	Main smoke ar	nd soot g	enerating facilities		-			-			Boilers	3		Boilers	;		-			-			-	
			Unit	Control content	Control value	Measurement	Control content	Control value	Measurement	Control	Control value	Measurement	Control	Control value	Measurement	Control content	Control value	Measurement	Control content	Control value	Measurement	Control	Control value	Measurement
	SOx		nission control and ue control: m³N/h							K-value control	14.5	0.2	K-value control	6	0.046									
Exhaust gas	NOx		emission control: m³N/h, tration control: ppm	soot	smoke genera facilitie	ating	soot	moke a genera cilities	ting	Concentration control	No applicable control value	78	Concentration control	180	100	soo	smoke t gener facilitie	ating	soot	smoke t genera facilitie	ating	soot	smoke gener facilitie	rating
	Soot and dust		g/m³N							Concentration control	No applicable control value	0.015	Concentration control	0.3	0.005									

^{*} Total emission control: Control value or agreed value by plant and the measurement value of major facilities
* K-value control and concentration control: Control and measurement values of major facilities

				Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement						
		pH	-	5.8-8.6	6.6	5.8-8.6	7.5	5.8-8.6	8.1	5.8-8.6	7.4	_	-	5.8-8.6	7.0	_	_
		BOD	mg/L	25	3.0	60	3.4	20	1.4	20	1.9	_	-	160	0.7	_	_
		COD	mg/L	25	4.0	60	6.9	_	_	_	7.6	_	_	160	1.2	_	_
		Nitrogen	mg/L	60	42	120	2.5	60	0.65	_	_	_	_	120	_	_	_
	Public water	Phosphorus	mg/L	8	5.6	16	ND	1	ND	-	_	_	-	16	-	-	_
	areas	Hexavalent chromium	mg/L	0.5	ND	0.5	ND	0.1	ND	0.1	ND	_	-	0.5	_	_	_
Drainage	:	Lead	mg/L	0.1	0.02	0.1	0.03	0.1	0.02	0.1	ND	_	_	0.1	ND	_	_
		Regulation value of COD volume	kg/day	_	_	_	_	_	_	_	_	_	_	-	-	_	_
		Regulation value of nitrogen volume	kg/day	_	_	_	_	_	_	_	_	_	_	_	_	_	
		Regulation value of phosphorus volume	kg/day	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Sewerage Pl	pH	-	_		_	_	_	_	_	_	No specific facilities	_	_	_	No specific facilities	_
		BOD	mg/L	_		_	_	_	_	_	_	_	_	_	_	_	_
		COD	mg/L	_		_	_	_	_	_	_	_	_	_	_	_	_
		SS	mg/L	_		_	_	_	_	_	_	_	_	_	_	_	_

Results of PRTR reporting Unit: kg/year

		Number specified	ı	Released	l amoun		Transi amo	ferred ount
Company name (site)	Substance name		Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
KUDOTA OL (O-II)	Organotin compounds	239	0.0	0.0	0.0	0.0	0.0	0.0
KUBOTA-C.I. (Sakai)	Lead compounds	305	1.0	0.0	0.0	0.0	0.0	15
KUDOTA O L (Odamana)	Organotin compounds	239	0.0	0.0	0.0	0.0	0.0	9.1
KUBOTA-C.I. (Odawara)	Lead compounds	305	0.0	0.0	0.0	0.0	0.0	65
	Organotin compounds	239	0.0	0.0	0.0	0.0	0.0	4.1
KUBOTA-C.I. (Tochigi)	Lead compounds	305	0.0	0.0	0.0	0.0	0.0	333
	Methylnaphthalene	438	0.0	0.0	0.0	0.0	0.0	0.0
KUBOTA Air Conditioner	Ferric chloride	71	0.0	0.0	0.0	0.0	0.0	0.0
(Tochigi)	Methylenebis (4, 1-phenylene) = diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0
KUBOTA Precision Machinery	N,N-Dicyclohexylamine	188	0.0	0.0	0.0	0.0	0.0	2,498
Nippon Plastic Industry	Lead compounds	305	3.0	0.0	0.0	0.0	0.0	5.0
Kyushu KUBOTA	Organotin compounds	239	0.0	0.0	0.0	0.0	0.0	2.1
Chemical	Lead compounds	305	0.0	0.0	0.0	0.0	0.0	77

Data on KUBOTA Group Production Sites Overseas

Kub Baumasch			ufacturing of corporation				n Kubota Headquarter		ota Corporation korn Plant)	P.T.Kubota	Indonesia	Kubota Agricul (Suzhou	tural Machinery Co., Ltd.	P.T.Metec	Semarang	Kubota Corpo	a Metal oration
Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion 0
522	20,238	347	13,464	1,744	67,580	413	16,024	687	26,633	259	10,028	992	38,439	375	14,553	2,477	95,998
1,880	187,150	22,020	2,195,720	13,640	135,991	10,800	1,077,100	5,560	554,240	1,480	147,480	4,880	486,650	4,140	412,400	14,740	1,469,610
1,005	38,953	6,012	233,036	5,252	203,571	3,192	123,734	2,117	82,058	639	24,776	2,247	87,103	1,439	55,793	6,268	242,959
7	,	7	0	1	0	8	5	6	1	2	6	4	6	3	5	3	8

2/4		1,429			9/3			414			217			4			931			328			2,335	
0.0		11.3			3.1			6.3			8.0			2.5			46.9			5.6			1.7	
Heating furnaces	Melti	ing furn	aces	Dryi	ng furn	naces		-		Dryi	ng furn	aces		_		1	Boilers		Dryi	ng furn	aces		ing furn	
Control content Value Measurement	Control	Control value	Measurement	Control content	Control value	Measurement	Control content	Control value	Measurement	Control	Control value	Measurement	Control content	Control value	Measurement	Control content	Control value	Measurement	Control content	Control value	Measurement	Control content	Control value	Measurement
	* Use with	e of tow n zero s conten	ulfur							with	of tow zero si conten	ulfur				with	of tow zero s conten	ulfur	(mg/m³)	800	23.7	Concentration control	No applicable control value	_
No smoke and soot generating facilities	Concentration control	No applicable control value	10	soot	smoke t genera facilitie	ating	soot	smoke t gener facilitie	ating	Concentration control	200	2	soot	smoke genera facilitie	ating	Concentration control	240	3.45	(mg/m³)	1000	0.305	Concentration control	No applicable control value	-
	Concentration control	No applicable control value	-							Concentration control	0.32	0.0076				Concentration control	No applicable control value	_	Concentration control	0.35	0.015	Concentration control	No applicable control value	-

6,129

7,619

6,391

Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement						
_	-	_	-	_	-	_	_	_	_	6.0-9.0	7.0	_	_	6.0-9.0	_	_	_
_	-	_	-	_	-	_	_	_	_	100	12	_	_	100	_	_	_
_	-	_	-	_	-	_	_	_	_	250	20.9	_	_	250	_	_	_
_	-	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_
-	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	0.1	0.00013	_	_	0.5	_	_	_
_	_	_	_	_	_	_	_	_	_	0.1	0.0129	_	_	0.1	_	_	_
_	_	_	-	-	-	_	_	_	_	_	0.8	_	_	_	_	_	_
_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6.5-9.0	_	6.0-9.5	8.0	6.0-9.0	7.5	6.0-9.0	7.4	(Sewage discharge)	_	_	_	(Sewage discharge)	_	_	_	(Sewage discharge)	_
-	_	900	89.8	250	18.2	450	128	_	_	_	_	_	_	_	_	_	_
1000	-	_	-	_	-	600	258	_	_	_	_	_	_	_	_	_	_
-	_	900	45.2	250	25	500	112	_	_	_	_	_	_	_	_	_	_

Results of chemical substances reporting Unit: kg/year (Reporting to National Pollutant Release Inventory (Canada))

			Relea amo	sed unt	Transferred amount
Company name (site)	Substance name	Number	Atmosphere	Other	Off-site transfers for recycling
	Chromium (and its compounds)	NA-04	46	0.0	108,010
Kubota Metal	Manganese (and its compounds)	NA-09	2.0	0.0	14,792
Corporation	Nickel (and its compounds)	NA-11	33	68	94,945
Corporation	PM10-Particulate Matter ≤ 10µm	NA-M09	777	0.0	0.0
	PM2.5-Particulate Matter ≤ 2.5µm	NA-M10	367	0.0	0.0

50-13 50-14

^{*} Facilities included: (1) burner combustion capacity of facilities using liquid fuel is 50 liters/hour or over (heavy oil equivalent); (2) combustion capacity of facilities using gas fuel is 80 m³/hour or over; (3) rated capacity of the transformers of facilities using electricity is 200 kVA (Kilovolt Amperes) or over.