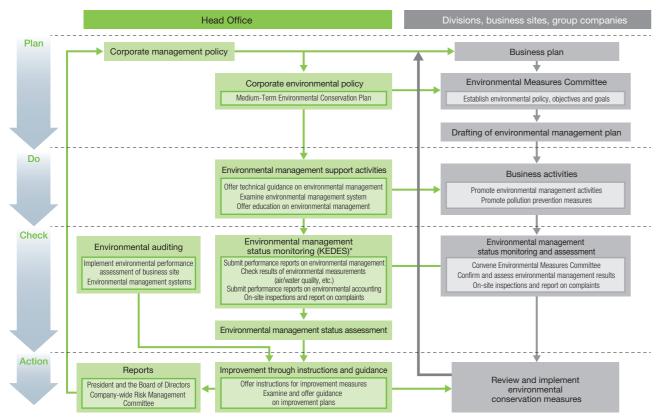

Promoting Environmental Management

The KUBOTA Group has identified the three objectives of "Stop climate change," "Work towards a recycling-based society" and "Control chemical substances" as a part of efforts to map out its basic direction of corporate environment management. In order to achieve these objectives, the Group is endeavoring to reduce the environmental loads associated with its production activities and to enhance the environmental friendliness of its products (see pages 45-50). As the foundation for these endeavors, we are striving to bolster our environmental management system.


Environmental management promotion system

The KUBOTA Group is promoting its environmental management, which is based on the environmental management system, through an organizational structure in which the Board of Directors serves as the highest decision-making body.

Organizational structure

KUBOTA Group environmental management system

*KEDES: Kubota Ecology Data E-System

Environmental management

Based on rules established by the KUBOTA Group, every effort is being made to create environmental management systems and energize activities at each business site. With the globalization of its business in recent years, the Group is endeavoring to build environmental management systems that also include its overseas business sites, promote the acquisition of ISO 14001 certification, and upgrade and expand environmental education activities. Moreover, the KUBOTA Group is working to further enhance environmental awareness and raise the level of environmental conservation activities.

Environmental auditing

Each year environmental audits are conducted by the KUBOTA Environmental Protection Department, based on the internal control system of the KUBOTA Group.

Audits in FY2013 were conducted by means of paper audits and field audits with factors that have the potential to cause environmental accidents listed as priority checklist items, focusing on production sites, service sites, offices and construction departments in Japan as well as overseas production sites.

Also, at production sites in Japan and overseas, in addition to environmental audits conducted by the Environmental Protection Department, internal environmental audits are also implemented by the staff of each site with the aim of raising the level of environmental management.

Audit of overseas production site (Kubota Manufacturing of America Corporation)

Drills for responding to abnormal and emergency situations

The KUBOTA Group is making efforts to identify and minimize the environmental risks associated with its business activities. It carries out regular training based on the procedures established to respond to specific risks at each site to mitigate the impact on the ambient environment in case of an environmental accident.

Drainage outlet blockage training (KUBOTA Construction Machinery Japan Corporation, SANKO KUBOTA KENKI CO., LTD.)

FY2013 Environmental audit implementation status [Number of subject sites and departments] 173 sites and departments

[Number of audit items]

83 items (for production sites)

[Audit details]

- Environmental management system
- Water & Air guality management
- Noise & Vibration management
- Waste material & Chemical substance management
- Climate change prevention
- Response to abnormalities and emergencies

Audit of business site in Japan (Shin-yodogawa Environmental Plant Center)

Effluent recovery training (KUBOTA Air Conditioner Ltd.)

-	
Management	
Economic Report	
Social Report	
Enviro	
ironmental oort	
Suppler)
Suppleme	

Environmental education

The KUBOTA Group conducted training sessions targeting each job class in order to stimulate awareness toward environmental issues and promote widespread understanding of environmental management. In addition, the Environmental Protection Department is taking the lead in conducting specialized education in such fields as pollution prevention technology and energy conservation while training ISO environmental auditors as a part of efforts to ensure the steadfast practice of environmental conservation. Moreover, individual and tailor-made environmental education activities are being conducted at each business site and Group company. Our energies are also being channeled toward cooperating with the environmental education activities of external organizations.

Results of environmental education in FY2013

Classification	Course title	Frequency	No. of participants	Course descriptions
	Training for new recruits	3	150	Regional and global environmental issues as well as environmental conservation activities
	CSR training (Employees of "creative" personnel who have worked for nine years)	3	158	Environmental issues and environmental risk management
Education by employee-level	Training for employees promoted to managerial positions	3	129	The KUBOTA Group's environmental management
	Training for newly appointed foremen	1	11	On-site environmental management and the role and responsibilities of foremen
	Training for newly appointed supervisors	2	55	On-site environmental management and the role and responsibilities of supervisors
	Basics of environmental management education	1	10	Basic knowledge on environmental management
	Pollution prevention technology education	1	9	Pollution control laws and pollution control technology
	Energy saving technology education	1	9	Energy saving laws, energy saving technology
	Waste management education	2	39	Waste Management and Public Cleansing Law, practical training in consignment contracts and manifests, etc.
Professional	Education to train ISO 14001 environmental auditors	2	32	The ISO 14001 standard, environment-related laws, audit techniques
education	Training aimed at raising the skill levels of ISO 14001 environmental auditors	8	96	On-site audit perspectives and the identification of non-compliance
	General education for ISO 14001 environmental auditors (China)	1	28	Internal audit procedures and improvement measures
	Environmental management technology education for production engineers	1	11	Pollution prevention technology and environmental risk management, energy saving technology
	Waste information management system education	4	26	Waste disposal consignment contract and manifest management
	Education regarding the management of products containing chemical substances	1	104	Trends in environment-related laws and regulations including REACH
	Total	34	867	

Support to education in	Japanese Association of Metal, Machinery and	-	10	Hanshin Plant environmental conservation
outside organizations	Manufacturing Workers (JAM)	1	10	initiatives

Training in connection with the management of products containing chemical substances (Kyuhoji Business Center)

Basic education for ISO 14001 environmental auditors (Kubota Agricultural Machinery (SUZHOU))

Status of environmental management system certification acquisition (ISO 14001 and EMAS)

All of the KUBOTA Group's production sites in Japan were awarded ISO 14001 certification by the end of FY2007. Currently, efforts to obtain ISO 14001 and other certifications are underway at its overseas production sites. In FY2013, two sites in the U.S. and two in Thailand acquired ISO 14001 certification. One site in Germany also acquired EMAS certification.

[I] ISO 14001 Certification

KUBOTA in Japan	
-----------------	--

No	Name	Other included organizations and subsidiaries	Main business	Inspecting/ Certifying organ	Date of certification
1	Tsukuba Plant	Eastern Main Parts Center KUBOTA F.I.M. Service Ltd. KS Tsukuba Training Center Kanto Kubota Precision Machinery Co.,Ltd.	Engines, tractors, etc.	LRQA	November 28, 1997
2	Keiyo Plant	Distribution Center	Ductile iron pipes, spiral welded steel pipes	LRQA	July 16, 1998
3	Ryugasaki Plant	 KUBOTA Vending Service Co., Ltd. Ryugasaki Plant KUBOTA Kanto Vender Center Inc. Ryugasaki Plant 	Vending machines	DNV	November 13, 1998
4	Hanshin Plant	 Marushima Factory 	Ductile iron pipes, rolls, potassium titanate	LRQA	March 5, 1999
5	Kyuhoji Business Center	KUBOTA Environmental Service Co., Ltd KUBOTA Membrane Corp. KUBOTA Keiso Corp.	Measuring instruments, measuring systems, CAD systems, rice-milling products, waste shredder systems, submerged membranes, and mold temperature controllers	DNV	March 19, 1999
6	Hirakata Plant		Valves, cast steel, new ceramic materials, and construction machinery	LRQA	September 17, 1999
7	Okajima Business Center		Industrial cast iron products, drainage pipes, and other cast iron products	JICQA	December 22, 1999
8	Sakai Plant/Sakai Rinkai Plant		Engines, tractors, small-size construction machinery, etc.	LRQA	March 10, 2000
9	Shiga Plant		FRP products	JUSE	May 18, 2000
10	Water Engineering & Solution Business Unit	Shin-yodogawa Environmental Plant Center	Sewage & sludge water purification, waste water treatment facilities	LRQA	July 14, 2000
11	Pumps Business Unit	KUBOTA Kiko Ltd.	Sewage & water purification plants, pumps and pump stations	LRQA	July 14, 2000
12	Water Engineering & Solution Business Unit (membrane filtration system)		Filtration membrane unit	LRQA	July 14, 2000
13	Utsunomiya Plant	KUBOTA F.I.M. Service Ltd. KS Utsunomiya Training Center	Rice transplanters and combine harvesters	LRQA	December 8, 2000

KUBOTA Group: Companies in Japan

	DO IN GIOUP. COMPANIES IN OUP				
No	Name	Other included organizations and subsidiaries	Main business	Inspecting/ Certifying organ	Date of certification
1	Nippon Plastic Industry Co., Ltd.	 Head office and plant, Mino Plant 	Plastic pipes, plastic sheets, etc.	JSA	October 27, 2000
2	KUBOTA Construction Co., Ltd.		Design and construction of civil engineering structures and buildings	JQA	December 22, 2000
3	KUBOTA Environmental Service Co., Ltd.		Installation, maintenance and management of environmental systems for service water, sewage, landfill disposal, raw waste and waste plants, etc.	MSA	November 20, 2002
4	KUBOTA-C.I. Co., Ltd.	 Tochigi Plant Sakai Plant Odawara Plant Kyushu KUBOTA Chemical Co., Ltd. 	Plastic pipes and couplings	JUSE	March 27, 2003 (integrated authentication in 2011)
5	KUBOTA Air Conditioner Co., Ltd.	 Tochigi Plant 	Central air conditioning systems	JQA	August 27, 2004
6	KUBOTA Pipe Tech Co.		Design, construction, installation and management of pipelines	JCQA	January 24, 2005
7	KUBOTA Precision Machinery Co., Ltd.		Hydraulic valves, hydraulic cylinders, transmissions, hydraulic pumps, hydraulic motors, etc.	LRQA	March 17, 2007
8	KUBOTA KASUI Corporation		Design, construction and maintenance management of environmental conservation facilities	BCJ	February 1, 2010

KUBOTA Group: Overseas companies

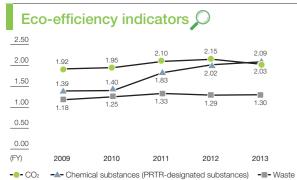
No	Name	Main business	Inspecting/ Certifying organ	Date of certification
1	SIAM KUBOTA Corporation Co., Ltd. (Navanakorn, Thailand)	Small diesel engines and agricultural machinery	MASCI	February 28, 2003
2	P.T. Kubota Indonesia(Indonesia)	Diesel engines and agricultural machinery	LRQA	February 10, 2006
3	Kubota Materials Canada Corporation (Canada)	Cast steel products	SGS (U.S.)	June 15, 2006
4	P.T.Metec Semarang (Indonesia)	Vending Machines	ΤÜV	March 16, 2011
5	Kubota Precision Machinery (Thailand) Co., Ltd. (Thailand)	Equipment for tractors	SGS	August 27, 2012
6	Kubota Manufacturing of America Corporation (U.S.)	Small-sized tractors, mowers, Utility Vehicles and tractor implements	BSI	September 20, 2012
7	SIAM KUBOTA Corporation Co., Ltd. (Amata Nakorn, Thailand)	Tractors and combine harvesters	BV	September 27, 2012
8	Kubota Industrial Equipment Corporation (U.S.)	Tractor implements and tractors	DEKRA	November 28, 2012
9	KUBOTA SANLIAN PUMP (ANHUI) Co., Ltd. (China)	Pumps	CCSC	May 29, 2013
LRC DNV JICC JUS JSA JQA MSA JCC BCJ	EDV Certification B.V. (Netherlands) JIC Quality Assurance Ltd. (Japan) Union of Japanese Scientists and Engineers ISO Center Japanese Standards Association Japan Quality Assurance Organization Management System Assessment Center (Japan) Japan Chemical Quality Assurance Ltd.	 MASCI : Management System Certificatio SGS (U.S.): Systems & Services Certificatio (U.S.) TÜV : TÜV Rheinland Cert GmbH (Ger SGS : SGS United Kingdom Limited (U.BSI : BSI Assurance UK Limited (U.K BV : Bureau Veritas Certification Hold DEKRA : DEKRA Certification, Inc. (U.S.) CCSC : China Classification Society Cer 	n, a Division of many) J.K.) Jing SAS—UK B	SGS North America Inc. ranch (U.K.)

[II] EMAS certification

Kl	JBOTA Group: Overseas companies			
No	Name	Main business	Inspecting/ Certifying organ	Date of certification
1	Kubota Baumaschinen GmbH (Germany)	Construction Machinery	IHK	January 3, 2013

IHK: Industrie- und Handelskammer für die Pfalz (Germany)

Trends in Major Environmental Indicators


Medium-term environmental conservation plan / Management indicators (KPI)

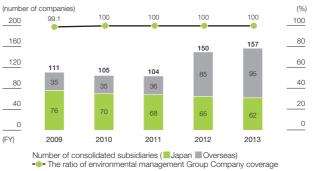
Actions	Management Indicators ^{*1}	Units	FY2009	FY2010	FY2011	FY2012	FY2013
Reduce CO2	CO2 emissions per unit of sales	tons CO _{2e} / billion¥	520	513	477	464	492
	CO ₂ emissions	kilotons CO _{2e}	575	478	445	468	575
Reduce CO ₂ during distribution ^{*2}	CO2 emissions per unit of sales	tons CO _{2e} / billion¥	41.3	41.8	41.4	40.0	37.6
	Waste discharge per unit of sales	tons/billion¥	85.0	79.8	75.0	77.6	76.8
Reduce waste	Ratio of business sites that have achieved zero emissions	%	36.7	46.7	50.0	39.4	41.0
Conserve water resources	Water consumption per unit of sales	m ³ /million¥	4.60	5.01	4.53	4.42	3.85
Reduce PRTR-designated substances ^{*2}	Release & transfer per unit of sales	kg/billion¥	717	714	546	495	479
Reduce chemical substances in products	Ratio of models with reduced RoHS- designated substances	%	24.1	24.2	22.2	28.0	36.0
	Reduce CO ₂ Reduce CO ₂ during distribution ² Reduce waste Conserve water resources Reduce PRTR-designated substances ² Reduce chemical	Reduce CO2 CO2 emissions per unit of sales Reduce CO2 during distribution ² CO2 emissions per unit of sales Reduce waste Waste discharge per unit of sales Reduce waste Waste discharge per unit of sales Coserve water resources Water consumption per unit of sales Reduce PRTR-designated substances ² Release & transfer per unit of sales	Reduce CO2 CO2 emissions per unit of sales tons CO2e/ billion¥ Reduce CO2 CO2 emissions per unit of sales kilotons CO2e/ billion¥ Reduce CO2 during distribution ² CO2 emissions per unit of sales tons CO2e/ billion¥ Reduce waste Waste discharge per unit of sales tons CO2e/ billion¥ Reduce waste Waste discharge per unit of sales tons/billion¥ Retio of business sites that have achieved zero emissions % Conserve water resources Water consumption per unit of sales m³/million¥ Reduce PRTR-designated substances ¹² Release & transfer per unit of sales kg/billion¥ Reduce chemical Ratio of models with reduced RoHS- %	Reduce CO2 CO2 emissions per unit of sales tons CO2e/ billion¥ 520 Reduce CO2 CO2 emissions per unit of sales kilotons CO2e/ billion¥ 575 Reduce CO2 during distribution ² CO2 emissions per unit of sales tons CO2e/ billion¥ 41.3 Reduce waste Waste discharge per unit of sales tons/billion¥ 85.0 Ratio of business sites that have achieved zero emissions % 36.7 Conserve water resources Water consumption per unit of sales m³/million¥ 4.60 Reduce PRTR-designated substances ² Release & transfer per unit of sales kg/billion¥ 717 Reduce chemical Ratio of models with reduced RoHS- % 24.1	Reduce CO2 CO2 emissions per unit of sales tons CO2e/ billionY 520 513 Reduce CO2 distribution ² CO2 emissions per unit of sales kilotons CO2e/ billionY 520 513 Reduce CO2 distribution ² CO2 emissions per unit of sales tons CO2e/ billionY 41.3 41.8 Reduce waste Waste discharge per unit of sales tons/billionY 85.0 79.8 Reduce waste Ratio of business sites that have achieved zero emissions % 36.7 46.7 Conserve water resources Water consumption per unit of sales m³/millionY 4.60 5.01 Reduce PRTR-designated substances ⁻² Release & transfer per unit of sales kg/billionY 717 714 Reduce chemical Ratio of models with reduced RoHS- % 24.1 24.2	Reduce CO2 CO2 emissions per unit of sales tons CO2e/ billionV 520 513 477 Reduce CO2 CO2 emissions per unit of sales kilotons CO2e/ billionV 575 478 445 Reduce CO2 during distribution ² CO2 emissions per unit of sales tons CO2e/ billionV 41.3 41.8 41.4 Reduce waste Waste discharge per unit of sales achieved zero emissions tons/billionV 85.0 79.8 75.0 Reduce PRTR-designated substances ² Water consumption per unit of sales substances ² m³/millionV 4.60 5.01 4.53 Reduce chemical Release & transfer per unit of sales kg/billionV 717 714 546	Reduce CO2CO2 emissions per unit of salestons CO2e/ billion¥520513477464Reduce CO2 during distribution2CO2 emissions per unit of saleskilotons CO2e/ billion¥520513477464Reduce CO2 during distribution2CO2 emissions per unit of salestons CO2e/ billion¥575478445468Reduce wasteWaste discharge per unit of salestons CO2e/ billion¥41.341.841.440.0Reduce wasteWaste discharge per unit of salestons/billion¥85.079.875.077.6Ratio of business sites that have achieved zero emissions%36.746.750.039.4Conserve water resourcesWater consumption per unit of salesm³/million¥4.605.014.534.42Reduce PRTR-designated substances'2Release & transfer per unit of saleskg/billion¥717714546495Reduce chemicalRatio of models with reduced RoHS- substances9624.124.222.228.0

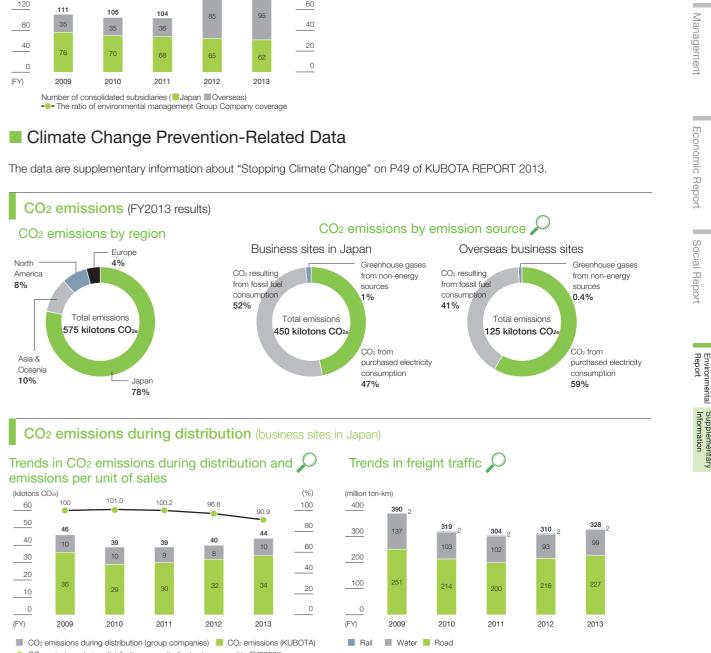
Indicators listed in the overview of environmental loads (P48)

		Enviro	nmental indica	tors	Unit	FY2009	FY2010	FY2011	FY2012	FY2013						
		Total energy i	nput		TJ	10,510	9,050	9,060	9,480	11,010						
			Fossil fuel		TJ	4,060	3,550	3,360	3,560	4,060						
			Purchased el	ectricity	MWh	589,330	503,400	523,500	543,100	642,400						
			Transportatio	n fuel (business sites in Japan)	TJ	671	561	564	587	641						
		Water consur	nption		million m ³	5.09	4.66	4.23	4.45	4.50						
NPUT				Overseas business sites included in the above	million m ³	0.49	0.40	0.44	0.52	0.83						
			Service water		million m ³	1.03	0.93	0.86	0.87	1.03						
			Water for indu	ustrial use	million m ³	2.97	2.69	2.36	2.56	2.46						
			Groundwater		million m ³	1.09	1.04	1.01	1.02	1.01						
		Amount of PF (business site	RTR-designate s in Japan)	d substances handled	tons	6,621	5,507	5,277	5,321	5,667						
		Amount of ch (overseas bus	emical substa siness sites)	nces handled	tons			2,667	4,488	4,138						
		CO ₂ emission	S		kilotons CO _{2e}	575	478	445	468	575						
				Overseas business sites included in the above	kilotons CO _{2e}	73	64	70	90	125						
	Atmospheric discharge								Energy sourc	es	kilotons CO _{2e}	566	470	439	462	569
					Other than th	e above	kilotons CO _{2e}	9	8	6	6	6				
		Distribution C	Distribution CO2 (business sites in Japan)		kilotons CO _{2e}	46	39	39	40	44						
					tons	3.9	3.8	5.2	2.9	6.6						
		NOx emissior	IS ^{*1}		tons	60.3	49.5	66.1	61.7	64.3						
		Soot and dust emissions ^{*1}		tons	5.6	3.8	5.5	6.4	5.7							
		Amount of PRTF Japan)	RTR-designate	d substances released (business sites in	tons	574	475	389	384	422						
				VOC (included in the above)	tons	574	475	389	384	422						
		Amount of ch	emical substa	nces released (overseas business sites)	tons	_	_	81	119	211						
				VOC (included in the above)	tons	—	—	—	119	175						
OUTPUT			Wastewater of	lischarge	million m ³	4.48	3.86	3.78	3.82	3.48						
				ess sites in Japan)	tons	11.7	9.5	10.6	11.9	10.4						
		Public water areas	Nitrogen disc (business site		tons	13.9	9.7	9.5	10.2	9.7						
	Water system	Water system		areas	Phosphorous (business site		tons	0.36	0.25	0.35	0.29	0.30				
			Amount of PF (business site	RTR-designated substances released s in Japan)	kg	40	33	35	40	9.0						
			Wastewater discharge		million m ³	0.90	0.99	0.94	1.01	1.34						
		Sewage lines Amount of PRTR-designate (business sites in Japan)		RTR-designated substances released is in Japan)	kg	48	20	21	20	20						
		Amount of wa	aste discharge		kilotons	94.1	74.3	70.0	78.2	89.7						
	Waste			Overseas business sites included in the above	kilotons	3.9	9.9	10.2	14.5	25.4						
	Waste		Landfill waste	•	kilotons	10.2	3.9	4.3	4.1	7.2						
		Amount of co (business site		ste, etc. discharge	kilotons	26.2	21.5	18.9	32.7	31.8						

*1 Data for overseas business sites is included from FY2011 onwards. *2 Data for total discharge from business sites subject to total emission control.

 Eco-efficiency indicator for CO₂ = Consolidated net sales (million¥) / CO₂ emissions (tons CO_{2n}) Eco-efficiency indicator for waste = Consolidated net sales (million¥) / Waste discharge (hundred kg) Eco-efficiency indicator for chemical substances =Consolidated net sales (million¥) / The amount of PRTR-designated substances released and transferred (kg) (business sites in Japan)

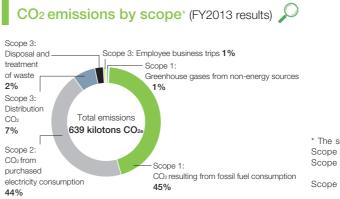

The eco-efficiency indicators for the amount of waste discharge recorded and the amount of PRTR-designated substances released and transferred improved from the previous fiscal year. Meanwhile, the eco-efficiency indicator for CO2 declined owing mainly to the increase in the electric power CO2 emission coefficient resulting from the suspension of operations at nuclear power generation plants in Japan.


How to read the indicators

The improvement of the indicators means that the sales per unit of environmental load have increased, which is considered to indicate higher eco-efficiency.

The Ratio of Environmental Management Group Company Coverage

All the consolidated subsidiaries in Japan and overseas have been subject to environmental management since FY2010.



-O- CO2 emissions during distribution per unit of sales (compared to FY2009)

* CO2 emissions during distribution per unit of sales = CO2 emissions during distribution / Consolidated net sales

- * The scope of business emissions as defined in the Greenhouse Gas (GHG) Protocol
- Scope 1: Direct GHG emissions from businesses themselves
- Scope 2: Indirect emissions associated with the consumption of electric power, heat, and steam supplied by others
- Scope 3: Indirect emissions other than scope 2 (others emissions related to business activities)

Data Concerning Resource Recycling

The data are supplementary information about "Working towards a Recycling-based Society" on P49 of KUBOTA REPORT 2013.

(FY2013 results)

Total waste

discharge

89.7

kilotons

discharge by type (FY2013 results)

Glass, concrete, pottery waste 2%

Total waste

discharge

89.7

kilotons

Pape

Waste oil 3%

Waste

scrap 3%

waste 4%

acid 5%

Soot and dust 6%

scrap 6%

Sludge 11%

charge and recycling ratio (Business sites in Japan)

Wood

Trends in the amount construction waste, etc. dis-

2011

Amount of construction waste, etc. discharge " - Recycling rate (Specific construction materials)

*1 The FY2012 amount of construction waste, etc. discharge and recycling ratio have

*2 Recycling rate =[sales of valuable resources + resource recycling + volume reduction

(heat recovery)]/ amount of construction waste, etc. discharge (including sales of

Are Recycling rate (Including construction waste other than specific construction materials) "1."2

2012

2013

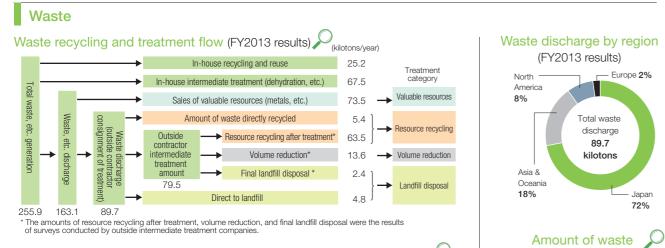
- Europe 2%

- Japan

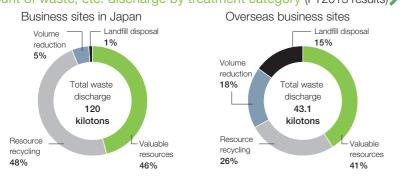
72%

4%

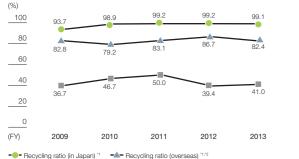
100


80

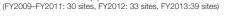
60


40

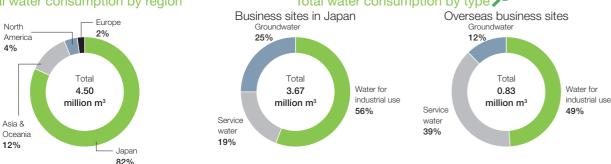
20


0

Amount of waste, etc. discharge by treatment category (FY2013 results)


Trends in ratio of business sites that have achieved zero emissions, and recycling ratio

- Ratio of business sites that have achieved zero emissions "


*1 Recycling ratio (excluding volume reduction) (%) = (Sales of valuable resources + resource recycling) / (Waste, etc. discharge - Volume reduction in intermediate treatment by outside contractors) x 100 The resource recycling does not include heat recovery. The volume of reduction in intermediate treatment conducted by outside contractors refers to reduction through dehydration, incineration, etc.

*2 The FY2012 recycling ratio (overseas) has been adjusted in order to improve accuracy *3 The ratio of business sites that have achieved zero emissions is calculated using the number of KUBOTA Group production sites as a denominator

Total water consumption (FY2013 Results)

Total water consumption by region

(kilotons

40

_____30

20

____10

0

(FY)

2009

valuable resources) x 100 (%)

2010

been adjusted in order to improve accuracy.

Chemical Substance-Related Data

This is supplementary information for P50 "Controlling Chemical Substances" in KUBOTA REPORT 2013.

PRTR-designated substances and VOCs (FY2013 results) Results of PRTR reporting (Production sites in Japan)

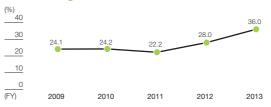
				U	nit: kg/year	(Dioxins:	mg-TEQ/year)
Number			Releases			Т	ransfrts
specified in Cabinet Order	Chemical substance	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
1	Water-soluble zinc compounds	0.0	9.0	0.0	0.0	20	1,322
53	Ethylbenzene	106,517	0.0	0.0	0.0	0.0	21,475
71	Ferric chloride	0.0	0.0	0.0	0.0	0.0	0.0
80	Xylene	169,039	0.0	0.0	0.0	0.0	34,921
87	Chromium and chromium (III) compounds	0.0	0.0	0.0	0.0	0.0	3,871
132	Cobalt and its compounds	0.0	0.0	0.0	0.0	0.0	3.3
188	N,N-Dicyclohexylamine	0.0	0.0	0.0	0.0	0.0	1,205
239	Organic tin compounds	0.0	0.0	0.0	0.0	0.0	12
240	Styrene	21,831	0.0	0.0	0.0	0.0	0.0
243	Dioxins	0.095	0.0	0.0	0.0	0.0	0.860
277	Triethylamine	0.0	0.0	0.0	0.0	0.0	0.0
296	1, 2, 4-trimethylbenzene	8,487	0.0	0.0	0.0	0.0	6,603
297	1, 3, 5-trimethylbenzene	2,148	0.0	0.0	0.0	0.0	30
300	Toluene	111,211	0.0	0.0	0.0	0.0	19,174
302	Naphthalene	2,647	0.0	0.0	0.0	0.0	0.0
305	Lead compounds	5.8	0.0	0.0	0.0	0.0	14,792
308	Nickel	1.2	0.0	0.0	0.0	0.0	447
309	Nickel compounds	0.0	0.0	0.0	0.0	0.0	843
349	Phenol	0.0	0.0	0.0	0.0	0.0	0.0
354	Di-n-butyl phthalate	0.0	0.0	0.0	0.0	0.0	185
392	n-Hexane	0.0	0.0	0.0	0.0	0.0	0.0
400	Benzene	2.1	0.0	0.0	0.0	0.0	0.0
405	Boron compounds	0.0	0.0	0.0	0.0	0.0	1,546
411	Formaldehyde	283	0.0	0.0	0.0	0.0	0.0
412	Manganese and its compounds	0.0	0.0	0.0	0.0	0.0	30,327
438	Methylnaphthalene	13.1	0.0	0.0	0.0	0.0	0.0
448	Methylenebis (4, 1-phenylene) diisocyanate	0.0	0.0	0.0	0.0	0.0	0.0
453	Molybdenum and its compounds	0.0	0.0	0.0	0.0	0.0	0.0
	Total	422,185	9.0	0.0	0.0	20	136,756

* The annual total amount handled by each production site in Japan is calculated with regard to one ton or more (or 0.5 ton or more in case of Specific Class I Designated Chemical Substances). :Volatile Organic Compound (VOC)

Groundwater monitoring (FY2013)

Results of groundwater measurements conducted on the premises of the business sites that used organic chlorine-based compounds in the past are as shown below.

Business site	Substance	Substance Measured groundwater value		
Tsukuba Plant	Trichloroethylene	Non detected (Less than 0.0001mg/L)	Less than 0.03 mg/L	
Utsunomiya Plant	Trichloroethylene	Non detected (Less than 0.001mg/L)	Less than 0.03 mg/L	

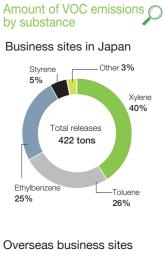

Controlling chemical substances contained in products

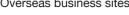
Reduction of chemical substances contained in products

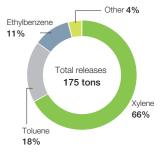
EU's RoHS Directive^{*1} and ELV Directive, and similar laws and regulations in other countries and regions, are targeted at electrical and electronic equipment and/or automobiles. Although most of the industrial machinery provided by the KUBOTA Group is not included in the scope of these regulations as of 2013, the Group has promoted proactive measures to systematically reduce the use of the six RoHS-designated substances: lead, mercury, cadmium, hexavalent chromium, PBB and PBDE.

The ratio of models with reduced RoHS-designated substances*2 in FY2013 stood at 36.0%, failing to reach the preset target of 40%. However, progress is being made on the use of alternatives on a component unit basis.

Trends in the ratio of models with reduced **RoHS-designated substances**




50-7


America

4%

Response to regulations related to chemical substances

As a response to the REACH Regulation^{*3} and other regulations related to chemical substances, the KUBOTA Group has established and enforced rules to identify the chemical substances contained in its products and ensure their appropriate control. Since FY2011, the Group has categorized chemicals contained in products into the three control levels listed below. The Group also undertakes researches on chemicals contained in products on a global basis, with support from its suppliers.

- Control levels -

- 1. Substances to be Prohibited; Should not be contained in products
- 2. Substances to be Restricted; Should not be contained in products under certain conditions and applications
- 3. Substances to be Controlled; Their presence in products should be recognized
- *1 RoHS Directive: EU's Directive for Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment
- *2 Ratio of the value of shipped products that contain RoHS-designated substances (lead, hexavalent chromium, mercury, cadmium, PBB and PBDE) in amounts equal to or less than the threshold limits (except products used for applications exempted from the RoHS Directive and ELV Directive) against the total value of products shipped in FY2013 (excluding plants, facilities, construction, services and software evelopment).
- *3 REACH Regulation: EU's Regulation for Registration, Evaluation, Authorisation and Restriction of Chemicals

Enviro

Environmental Accounting

The KUBOTA Group takes steps to ascertain the costs undertaken to protect the environment as well as their effect on a quantitative basis.

Environmental conservation costs \mathcal{P}

					(Yen in millions)
		FY2	012	FY2	013
Classifications	Main activities	Investment	Expenses	Investment	Expenses
Within the business area cost		654	1,423	722	1,424
Local environmental conservation cost	Prevention of air and water pollution, soil contamination, noise, vibration, etc.	273	524	160	393
Global environmental conservation cost	Prevention of climate change	287	171	453	217
Resource recycling cost	Minimizing waste production, reducing quantity of waste, and recycling	94	728	109	814
Upstream and downstream costs	Collection of used products and commercialization of recycled products	0	21	0	24
Management activities cost	Environmental management personnel, ISO maintenance and implementation, environmental information dissemination	12	1,304	4	1,225
R&D cost	R&D for reducing of product environmental load and developing environment conservation equipment	743	5,088	339	5,262
Social activities cost	Local cleanup activities and membership fees and contributions to environmental groups, etc.	0	1	0	1
Environmental remediation cost	Contributions and impositions, etc.	0	203	0	200
Total		1,409	8,040	1,065	8,136
Total capital investment (including	land) for the corresponding period (consolidated data)				48,700
Total R&D costs for the correspon	ding period				31,200

Environmental conservation effects

Effects	Items	FY2012	FY2013
Environmental effect related to	Energy consumption (Except for transportation fuel) [units of heat; in terajoules (TJ)]	7,270	7,660
resources input into business activities	Water consumption (million m ³)	3.94	3.67
	CO2 emissions (Energy related) (kilotons CO2)	373	444
	SOx emissions (tons)	2.5	4.1
Environmental effect related to waste	NOx emissions (tons)	56.1	58.0
or environmental impact originating	Soot and dust emissions (tons)	3.8	3.5
from business activities	Releases and transfers of PRTR-designated substances (tons)	499	559
	Waste discharge (kilotons)	63.8	64.3
	Waste to landfills (kilotons)	0.9	1.0

Economic effects 🔑

		(Yen in millions)
Classifications	Details	Annual effects
Energy conservation measures	Reduce waste including standby electricity by visualizing energy use; increase the efficiency of compressor and boiler energy consumption; other	515
	Improve loading and distribution efficiency; other	19
Zero-emissions measures	Reduce the amount of industrial waste; promote resource recycling; other	11
Zero-emissions measures	Sales of valuable resources	836
Tabal		4.004

<Environmental accounting principles>

1) The period covered spans from April 1, 2012 to March 31, 2013.

2) The data of business sites in Japan are considered in the calculation

3) Data was calculated referring to the Environmental Accounting Guidelines 2005, published by Japan's Ministry of the Environment.

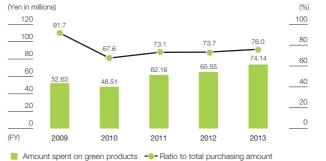
4) "Expenses" includes depreciation costs. Depreciation cost was calculated based on the standards applied to KUBOTA's financial accounting, and assets acquired in and

- after 1998 were considered in the calculation. "Management activities" and "R&D costs" include personnel expenses
- "Resource recycling costs" does not include costs incurred during disposal of construction waste at construction sites

"R&D costs" represents that which was spent on environmental purposes, calculated on a pro-rata basis.

5) "Economic effects" is obtained only by adding up tangible results and does not include estimated effects. 6) The amount of R&D cost expenditure in FY2012 has been revised to enhance accuracy.

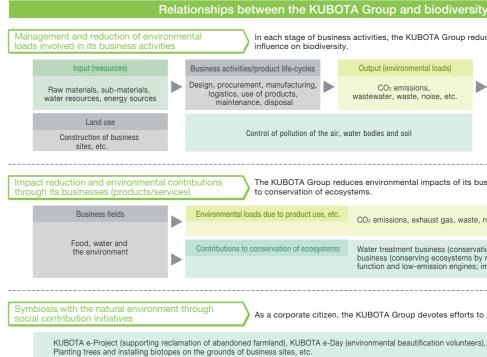
Green Procurement


For the purpose of providing products that are friendly to the global and local environment, the KUBOTA Group is seeking to procure products with reduced environmental impacts from eco-friendly suppliers.

In order to effectively promote eco-friendly sourcing activities, the Group presents its policy for green procurement in the KUBOTA Group's Green Procurement Guidelines, to request the understanding and cooperation of suppliers.

Please refer to _____http://www.kubota-global.net/environment/procure.html for details regarding the KUBOTA Group Green Procurement Guidelines.

Green Purchasing


The KUBOTA Group is promoting the purchase of "green" office supplies (paper, stationery, etc.). In FY2013, the ratio of the amount spent on green products to total purchasing amount was 76.0%.

* From FY2010 onwards, the target items of green purchasing were changed

Conservation of Biodiversity

Conservation of biodiversity is set as one of the targets for the KUBOTA Group's "Eco-First Commitment." In its business activities and social contribution initiatives, the Group endeavoring to ensure that care is taken to conserve biodiversity and protect the natural environment.

olodu	Wasts
KUBOTA Smup Dream Projeurement Guidelines (ner 4)	Bubstances of Concern Lief
April (1011 40,461/54./pagewidet	Avr.2x0 Kidlith Capacitan

KUBOTA Group's Green Procurement Guidelines and Appendix

Amount spent on green products and the ratio to total purchasing amount (Business sites in Japan) \wp

In each stage of business activities, the KUBOTA Group reduces environmental loads and consider its

Output (environmental loads)		Impact on biodiversity
CO ₂ emissions,		(issues to be considered)
wastewater, waste, noise, etc.	-	Excessive consumption of resources, loss
, water bodies and soil		of habitats due to climate change or pollution, transfer of exotic species
educes environmental impacts of its systems.	busi	ness activities, and contribute
CO2 emissions, exhaust gas, wast	te, no	bise, vibration, etc.
	by ri	n of water bodies), agricultural machinery ce transplanters with a pesticide-reduction proving agricultural crop yields)
the KUBOTA Group devotes efforts	s to p	preserving the natural environment.

KUBOTA Group Production Sites Data (results of FY2013)

Data on KUBOTA production sites in Japan

Item		Busines	is site Ha	nshin Plant (Marush	(Mukogawa, nima)	Hanshin Pla	ant (Amaga	asaki) Ke	eiyo Plant (Funat	ashi, Distribution	Center) Ke	yo Plant (Ichikawa)	Hiraka	ta Plant	Okajim	a Business C	enter	S	akai Plant		Sakai Rin	nkai Plant	Utsund	miya Plant		Tsukub	a Plant	Kyuhoji Bu	siness Center *4	Ryugasa	ki Plant *4		Shiga Plant	
INPUT																																		
		Uni	Volun	ne of use	Heat conversion GJ	Volume of use	e He conver	eat rsion GJ	/olume of us	e Heat conversio	n GJ Volume	of use Heat conversion G	Volume of use	Heat conversion G.	Volume of	use H	leat rsion GJ	Volume of u	ise conv	Heat ersion GJ	Volume of use	Heat conversion GJ	Volume of use	Hea conversio	t on GJ Vol	ume of use	Heat conversion	J Volume of us	e Heat conversion GJ	Volume of use	Heat conversion G	J Volume of		Heat ersion GJ
Energy	Fossil fuel	Crude equivale	oil 1	6,511	639,961	5,758	22	3,170	23,092	895,	031	86 3,320	5,705	221,124	5,2	26 20	02,553	4,150	3 16	60,984	2,932	113,661	1,296	50,2	238	5,750	222,87		9,302	250	9,684	69		6,732
	Purchased el	,		2,095	412,277	32,600	32	5,024	46,523	453,	960 4,6	75 46,612	46,513	454,625	40,3	28 39	91,430	35,43	1 34	45,762	16,494	160,794	5,737	56,6	667	46,472	452,90	2,309	22,658	3,488	34,776	2,25	51 22	2,445
	To	otal Crude equivale	oil 2	7,148	1,052,238	14,143	54	8,194	34,804	1,348,	991 1,2	88 49,932	17,434	675,749	15,3	25 59	93,983	13,074	4 50	06,746	7,081	274,455	2,758	106,9	905	17,435	675,77	825	31,960	1,147	44,460	1,26	69 49	9,177
Water usage		thousan	d m ³	754	4		211			950		11	1	76		90			133		5	4		110		21	4		14		13		92	
OUTPUT										000						00					0					2.							02	
	CO ₂ emission energy source	ns from tons C	O _{2e}	71,92	25	25	5,815		10	0,212		2,381	32	377		37,736			25,230		14,	546	5	,539		34,0	001		,549	2,	111		2,346	
	Discharge am	nount tons		10,52	26	5	,271		1	8,415		142	2	975		15,995			1,286		70	02		313		2,9	12		141	1	20		181	
Waste	Recycling rati		•	99.6			,271 99.8			99.9		99.9		0.0		100.0			99.7		100			98.9		99			99.5		9.2		97.4	
	Main smoke a	and soot generating faci	lities*2	Melting fu	irnaces	Heatin	g furnaces		Meltir	g furnaces			Heating	furnaces	M	elting furnaces	s	Drv	ng furnace	25			в	oilers		Boil	ers			B	ilers		Boilers	
		Unit	Cont	-	rol Magguramont	Control Content v			Control Content	-	rement		Control Co content va		Control		leasurement		Control	Measurement				ontrol	urement Co	ntrol Con		ent			ntrol alue Measurem	ent Control	Control	Measurement
	SOx	Total emission control K-value control: m ³ N				Use of towr		zero	Total	19.3 0.3		ke and soot generating	Use of town	gas with zero content	Total emission control		0.05	Total emission control		0.145	No smoke and	soot apporating	Use of tow	n gas with ze r content	ero K-	value 17		No smoko a	id soot conorating	Use of town	gas with zero content	Use of	town gas with sulfur content	
Exhaust gas*1	NOx	Total emission control: n Concentration control:		ion 24.3	32 2.46	Total emission 2 control	2.24		Total emission control	41.4 2.		facilities	Total emission control 1.	189 0.062	Total emission control	2.4	0.40	Total emission control	1.535	0.34	facil	lities	Concentration control	150 2	25 Conc	entration ontrol 23	30 100	f	nd soot generating acilities	Concentration 2	30 60	Concentration control	180	35
	Soot and dust	Concentration control: (1/m ³ N Concent	ol 0.1	0.0014	Concentration control	0.1 C	0.0016	oncentration control	0.1 0.0	021		Concentration control C	0.1 0.005	Concentration control	0.05	0.02	Concentration control	0.1	0.025			Concentration control	0.1 0.	001 Conc	entration ontrol 0.2	25 0.0			Concentration control	0.2 Less 0.2 than 0.01	-	-	_
		rol: Control value (ir perating facilities: T								K-value c	ontrol and	oncentration con	rol: Control va	lue (including	g agreed v	alue) of ma	ajor smo	oke and s	oot gene	erating fac	cilities and th	ne measurem	ent value (m	iaximum \	value).									

 *2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

		Unit	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement
	pН	Minimum value, Maximum value	5.8~8.6	6.9, 7.6	_	_	5.0~9.0	6.8, 7.8	5.0~9.0	6.5, 7.6	5.8~8.6	7.1, 7.3	_	_	_	_	5.8~8.6	6.4, 7.7	5.8~8.6	7.1, 7.6	5.8~8.6	7.3, 7.7	_	_	_	_	6.0~8.5	7.6, 8.0
	BOD	mg/L	30	6	—		_	_	60	—	25	4.3	—	_	_	_	30	19.0	25	11.6	20	4.6	—	_	—	_	30	6.6
	COD	mg/L	20	6	_		20	6.4	60	13.8	25	5.1	_	_	_	_	30	19.5	_	_	20	7.2	_	_	—	_	30	7.6
	Nitrogen	mg/L	120	7.5	_		20	3.72	70	16.3	120	5.9	_	_	_	_	120	54.7	_	_	60	8.5	_	_	_	_	12	0.7
	Phosphorus	mg/L	16	0.2	_		2	0.05	7	1.9	16	0.39	—	_	_	_	16	3.78	—	_	8	1.0	_	_	_	_	1.2	Non-detected
[Hexavalent chromium	mg/L	0.35	Non-detected	_		0.05	Non-detected	_	_	0.05	Non-detected	_	_	_	_	0.5	Non-detected	_	_	0.5	Non-detected	_	_	_	_	0.05	Non-detected
Oraii	Lead	mg/L	0.1	Non-detected	_		0.1	Non-detected	0.1	Non-detected	0.01	Non-detected		—	—		0.1	Non-detected	—	—	0.1	0.01	_	—		_	0.1	Non-detected
eas nage	COD, total emission control	kg/day	97.44	13.2	_		110.5	12.3	4.0	0.44	38.0	2.11	_	_	_	_	3.30	0.89	_	_	_	_	—	_	_	_	_	_
ω	Nitrogen, total emission control	kg/day	40.51	15.2	_	_	114.7	7.3	2.865	0.48	38.3	2.58	_	_	_	_	13.20	2.10	_	_	_	_	_	_	_	_	_	_
	Phosphorus, total emission control	kg/day	1.424	0.5	_	_	11.65	0.08	0.391	0.052	4.4	0.20	_	_	_	_	1.76	0.06	_	_	_	_	_	_	_	_	_	_
Semo	pH	Minimum value, Maximum value	5.7~8.7	6.6, 8.1	5.7~8.7	6.8, 7.9	_	_	_	_	_	_	5.7~8.7	6.8, 7.2	5.7~8.7	7.2, 7.4	_	_	_	_	_	_	5.7~8.7	6.8, 7.6	5~9	6.2, 7.0	_	_
erac	BOD	mg/L	300	8	300	11	_	_	—	—	_	_	600	64	300	180	—	_	—	_	—	_	300	7	600	58	—	-
je	COD	mg/L	_	_	_		_	_	—	_	_	_	_	_	_	110	_	_	—	_	—	—	_	_	—	_	—	_
les	SS	mg/L	300	4	300	24	_	_	_	_	_	_	600	8	300	14	_	_	_	_	_	_	300	8	600	35	_	

*3 Total emission control: Control value (including agreed value) by plant and the measurement value. Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value). *4 Includes Group company data within the same site.

Results of PRTR Reporting (Unit: kg/year)

				Released	d amount		Transferre	ed amount	
Business site	Substance name	Cabinet Order No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site	
	Ethylbenzene	53	7,086	0.0	0.0	0.0	0.0	61	
	Xylene	80	9,907	0.0	0.0	0.0	0.0	90	
	Triethylamine	277	0.0	0.0	0.0	0.0	0.0	0.0	
	1, 2, 4-trimethylbenzene	296	2,969	0.0	0.0	0.0	0.0	0.0	
Hanshin Plant	Toluene	300	12,272	0.0	0.0	0.0	0.0	1,547	
(Mukogawa)	lead compounds	305	0.0	0.0	0.0	0.0	0.0	8,001	
	Nickel	308	0.0	0.0	0.0	0.0	0.0	223	
	Phenol	349	0.0	0.0	0.0	0.0	0.0	0.0	
	Methylenebis (4,1-phenylene) diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0	
	Ethylbenzene	53	11,277	0.0	0.0	0.0	0.0	8.0	
Hanshin Plant	Xylene	80	28,640	0.0	0.0	0.0	0.0	11	
(Marushima)	Toluene	300	28,316	0.0	0.0	0.0	0.0	199	
	Nickel	308	0.0	0.0	0.0	0.0	0.0	189	
	Chromium and Chromium (III) compounds	87	0.0	0.0	0.0	0.0	0.0	312	
	Toluene	300	2,036	0.0	0.0	0.0	0.0	0.0	
	Nickel	308	1.2	0.0	0.0	0.0	0.0	0.35	
Hanshin Plant (Amagasaki)	Boron compounds	405	0.0	0.0	0.0	0.0	0.0	1,540	
(Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	9,516	
	Molybdenum and its compounds	453	0.0	0.0	0.0	0.0	0.0	0.0	

				Released	d amount		Transferre	d amount
Business site	Substance name	Cabinet Order No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
	Ethylbenzene	53	19,648	0.0	0.0	0.0	0.0	332
	Xylene	80	30,276	0.0	0.0	0.0	0.0	494
	Triethylamine	277	0.0	0.0	0.0	0.0	0.0	0.0
	1, 2, 4-trimethylbenzene	296	1,872	0.0	0.0	0.0	0.0	8.0
	Toluene	300	52,121	0.0	0.0	0.0	0.0	793
Kaina Diant	lead compounds	305	0.0	0.0	0.0	0.0	0.0	6,320
Keiyo Plant (Funabashi)	Nickel	308	0.0	0.0	0.0	0.0	0.0	26
	Phenol	349	0.0	0.0	0.0	0.0	0.0	0.0
	Di-n-butyl phthalate	354	0.0	0.0	0.0	0.0	0.0	116
	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	14,072
	Methylenebis (4,1-phenylene) diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0
Keivo Plant	Ethylbenzene	53	6,294	0.0	0.0	0.0	0.0	129
(Distribution	Xylene	80	22,018	0.0	0.0	0.0	0.0	449
Center)	Toluene	300	7,893	0.0	0.0	0.0	0.0	161
Keiyo Plant (Ichikawa)	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	0.0
	Ethylbenzene	53	1,319	0.0	0.0	0.0	0.0	17,335
	Xylene	80	2,114	0.0	0.0	0.0	0.0	26,584
	Chromium and Chromium (III) compounds	87	0.0	0.0	0.0	0.0	0.0	2,505
	Cobalt and its compounds	132	0.0	0.0	0.0	0.0	0.0	3.3
	1, 2, 4-trimethylbenzene	296	165	0.0	0.0	0.0	0.0	2,213
Hirakata Plant	Toluene	300	1,327	0.0	0.0	0.0	0.0	15,122
	Nickel	308	0.0	0.0	0.0	0.0	0.0	8.1
	Boron compounds	405	0.0	0.0	0.0	0.0	0.0	6.5
	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	4,871
	Molybdenum and its compounds	453	0.0	0.0	0.0	0.0	0.0	0.0

			abinet Duble					ed amount		
Business site	Substance name	Cabinet Order No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site	В	usiness s
	Chromium and Chromium (III) compounds	87	0.0	0.0	0.0	0.0	0.0	1,054		
	Triethylamine	277	0.0	0.0	0.0	0.0	0.0	0.0		
	1, 2, 4-trimethylbenzene	296	2,771	0.0	0.0	0.0	0.0	0.0		
	1, 3, 5-trimethylbenzene	297	831	0.0	0.0	0.0	0.0	0.0		
Okajima Business	Nickel	308	0.0	0.0	0.0	0.0	0.0	0.0		
Center	Phenol	349	0.0	0.0	0.0	0.0	0.0	0.0	Ts	ukuba Pla
	Formaldehyde	411	283	0.0	0.0	0.0	0.0	0.0		
	Manganese and its compounds	412	0.0	0.0	0.0	0.0	0.0	1,612		
	Methylenebis (4,1-phenylene) diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0		
	Water-soluble zinc compounds	1	0.0	0.0	0.0	0.0	20	0.0		
	Ethylbenzene	53	3,174	0.0	0.0	0.0	0.0	223	æ	KUBOT
Sakai Plant	Xylene	80	4,679	0.0	0.0	0.0	0.0	383	Ryugasaki	
	1, 2, 4-trimethylbenzene	296	308	0.0	0.0	0.0	0.0	22	Isaki	KUBOT Co., Lt
	1, 3, 5-trimethylbenzene	297	215	0.0	0.0	0.0	0.0	7.6	Plant	
	Toluene	300	1,399	0.0	0.0	0.0	0.0	101	7	KUB01 Center
	Ethylbenzene	53	68	0.0	0.0	0.0	0.0	28		
Sakai Rinkai	Xylene	80	201	0.0	0.0	0.0	0.0	80		
Plant	Toluene	300	318	0.0	0.0	0.0	0.0	124	S	Shiga Pla
	Benzene	400	2.1	0.0	0.0	0.0	0.0	0.0		
	Water-soluble zinc compounds	1	0.0	9.0	0.0	0.0	0.0	472		
	Ethylbenzene	53	9,593	0.0	0.0	0.0	0.0	2,298		
Utsunomiva	Xylene	80	13,473	0.0	0.0	0.0	0.0	2,916		
Plant	1, 2, 4-trimethylbenzene	296	210	0.0	0.0	0.0	0.0	127		
	Toluene	300	110	0.0	0.0	0.0	0.0	67		
	Naphthalene	302	1,363	0.0	0.0	0.0	0.0	0.0		
	n-hexane	392	0.0	0.0	0.0	0.0	0.0	0.0		

		A 1	• /
Kyuhoji	Business	Center	4

					Transferred amount			
Subs	stance name	Cabinet Order No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
Water-solubl compounds	Water-soluble zinc compounds		0.0	0.0	0.0	0.0	0.0	850
Ethylbenzen	e	53	47,123	0.0	0.0	0.0	0.0	1,003
Xylene		80	49,532	0.0	0.0	0.0	0.0	3,706
1, 2, 4-trime	thylbenzene	296	191	0.0	0.0	0.0	0.0	4,233
1, 3, 5-trime	thylbenzene	297	1,102	0.0	0.0	0.0	0.0	22
Toluene		300	2,946	0.0	0.0	0.0	0.0	728
Naphthalene	9	302	1,284	0.0	0.0	0.0	0.0	0.0
Nickel comp	ounds	309	0.0	0.0	0.0	0.0	0.0	843
Manganese compounds		412	0.0	0.0	0.0	0.0	0.0	256
Methylenebi diisocyanate	s (4,1-phenylene)	448	0.0	0.0	0.0	0.0	0.0	0.0
	Ethylbenzene	53	935	0.0	0.0	0.0	0.0	59
	Xylene	80	1,164	0.0	0.0	0.0	0.0	69
ending Service	Xylene	80	4,995	0.0	0.0	0.0	0.0	137
-	Toluene	300	1,206	0.0	0.0	0.0	0.0	332
anto Vender	Xylene	80	1,907	0.0	0.0	0.0	0.0	0.0
Toluene		300	1,267	0.0	0.0	0.0	0.0	0.0
Styrene		240	21,831	0.0	0.0	0.0	0.0	0.0
Di-n-butyl phthalate		354	0.0	0.0	0.0	0.0	0.0	69
Methylenebis (4,1-phenylene) diisocyanate		448	0.0	0.0	0.0	0.0	0.0	0.0

ial Rep

Data on KUBOTA group production sites in Japan

Item			Business site)TA-C.I. akai))TA-C.I. Iwara))TA-C.I. chigi)	Cond	DTA Air ditioner chigi)		Precision		n Plastic ustry		KUBOTA mical
INPUT																	
			Unit	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ
Energy	Fossil fuel		Crude oil equivalent kL	72	2,783	124	4,798	244	9,475	246	9,553	748	28,995	64	2,484	2	66
	Purchased e	electricity	MWh	12,479	121,790	31,192	302,270	21,215	204,340	2,347	23,402	13,010	126,282	14,558	141,046	7,609	73,219
	Т	otal	Crude oil equivalent kL	3,214	124,573	7,922	307,068	5,516	213,815	850	32,955	4,006	155,277	3,703	143,538	1,891	73,286
Water usage			thousand m ³	1	8	3	38	2	74	(69	1	7	2	01		6
OUTPUT																	
	CO ₂ emissio energy source		tons CO _{2e}	5,2	293	14,	728	10	,497	1,	569	7,3	334	7,	680	3,9	999
	Discharge ar	mount	tons	2	22	6	33	2	26	1	69	4	71	3	33	1	18
Waste	Recycling ra	tio	%	99	9.9	99	9.8	10	0.0	10	0.0	99	9.8	99	9.1	10	0.0
	Main smoke	and soot gene	erating facilities ^{*2}					Bo	ilers	Bo	oilers						
		l	Unit					Control Co content co	ntrol ntent Measurement	Control Content co	ontrol Intent Measurement						
Exhaust gas*1	SOx	K-value co	ontrol: m ³ N/h		e and soot		e and soot	K-value control 1	4.5 1.0		wn gas with fur content		e and soot		e and soot		e and soot
		on control: ppm	generaun	ig facilities	generalin	g facilities	Concentration	- 68	Concentration 2	230 Less than 5	generaur	ng facilities	generaur	ng facilities	generatir	ig facilities	
	Soot and dust	Concentration	n control: g/m ³ N					Concentration control	Less than 0.005	Concentration (0.2 Less than 0.005						

*1 K-value control and concentration control: Control value (including agreed value) of major smoke and soot generating facilities and the measurement value (maximum value). *2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

			Unit	Control value	Measurement	Control value	Measurement	Control value	Measurement								
		рH	Minimum value, Maximum value	5.8~8.6	6.6, 7.7	5.8~8.6	7.3, 8.3	5.8~8.6	8.0, 8.3	5.8~8.6	7.3, 7.8	-	—	5.8~8.6	7.0, 7.4	_	-
		BOD	mg/L	25	4	60	1.4	20	3.1	30	3.2	_	_	160	1.6	_	_
		COD	mg/L	25	6	60	1.5	-	_	_	_	—	_	160	1	_	_
	Public	Nitrogen	mg/L	60	42	120	0.5	60	0.84	_	—	_	_	_	_	_	_
	olic 🗸	Phosphorus	mg/L	8	5.6	16	Non-detected	1	Non-detected	_	—	_	_	_	_	_	_
_	water	Hexavalent chromium	mg/L	0.5	Non-detected	0.5	Non-detected	0.1	Non-detected	0.1	Non-detected	_	_	_	_	_	_
Drai	ar ar	Lead	mg/L	0.1	0.07	0.1	Non-detected	0.1	0.06	0.1	Non-detected	—	_	0.1	Non-detected	_	_
Drainage ^{*3}	areas	COD, total emission control	kg/day	—	—	_	—	_	_	-	—	-	—	-	—	_	-
		Nitrogen, total emission control	kg/day	-	_	_	_	_	_	—	_	_	—	_	_	_	_
		Phosphorus, total emission control	kg/day	_	—	_	—	_	_	-	_	_	—	-	_	_	-
	Sewerage	рH	Minimum value, Maximum value	—	—	_	—	_	_	-	—			-	—		
	erag	BOD	mg/L	_	_	_	_	_	_	_	_	No speci	fic facilities	_	_	No specif	fic facilities
	je lir	COD	mg/L	_	_	_	_	_	_	_	_			_	_		
	lines	SS	mg/L	_	_	_	_	_	_	_	—			_	_		

*3 Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value).

Results of PRTR reporting (Unit: kg/year)

		Oshinat Oslav		Released	d amount		Transferre	ed amount
Business site	Substance name	Cabinet Order No.	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off-site
KUBOTA-C.I. (Sakai)	Xylene	80	135	0.0	0.0	0.0	0.0	0.0
KUBUTA-C.I. (Sakal)	Lead compounds	305	1.0	0.0	0.0	0.0	0.0	16
	Organic tin compounds	239	0.0	0.0	0.0	0.0	0.0	8.6
KUBOTA-C.I. (Odawara)	Lead compounds	305	0.0	0.0	0.0	0.0	0.0	121
	Organic tin compounds	239	0.0	0.0	0.0	0.0	0.0	2.2
KUBOTA-C.I. (Tochigi)	Lead compounds	305	0.0	0.0	0.0	0.0	0.0	240
	Methylnaphthalene	438	13	0.0	0.0	0.0	0.0	0.0
KUBOTA Air Conditioner	Ferric chloride	71	0.0	0.0	0.0	0.0	0.0	0.0
(Tochigi)	Methylenebis (4, 1-phenylene) diisocyanate	448	0.0	0.0	0.0	0.0	0.0	0.0
KUBOTA Precision Machinery	N,N-Dicyclohexylamine	188	0.0	0.0	0.0	0.0	0.0	1,205
Nippon Plastic Industry	Lead compounds	305	3.5	0.0	0.0	0.0	0.0	5.8
Kyushu KUBOTA	Organic tin compounds	239	0.0	0.0	0.0	0.0	0.0	1.1
Chemical	Lead compounds	305	1.3	0.0	0.0	0.0	0.0	88

Data on KUBOTA Group Overseas Production Sites

	Re	gion				North A	America					Eur	ope		
Item			Business site		ufacturing of corporation		ndustrial Corporation	Kubota Canada C	Vaterials orporation	Kubota Bau Grr			nd Group Norway AS		nd Group GmbH
INPUT															
			Unit	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ
Energy	Fossil fuel		Crude oil equivalent kL	1,362	52,797	1,688	65,439	2,753	106,705	588	22,795	2,787	108,030	409	15,856
	Purchased e	electricity	MWh	22,570	225,019	15,859	158,109	17,200	171,484	2,159	21,527	39,501	393,827	2,281	22,737
	Т	otal	Crude oil equivalent kL	7,168	277,816	5,768	223,548	7,177	278,189	1,144	44,322	12,948	501,858	996	38,593
Water usage			thousand m ³	6	1	1	6	4	6	6	6	2	8		2
OUTPUT															
CO ₂ emission	CO2 emissio energy source		tons CO _{2e}	17,	280	12,	925	8,3	26	2,1	76	6,4	114	1,8	304
	Discharge ar	mount	tons	1,7	/14	8	28	2,7	'99	27	79	3.	49	2	76
Waste	Recycling ra	tio	%	88	3.7	97	7.8	17	.7	95	5.0	93	3.7	89	9.3
	Main smoke	and soot gene	erating facilities ^{*2}	Bo	lers										
		ι	Jnit	Control Co content va	ntrol lue Measurement										
Exhaust gas*1	gas ^{*1} SOx Concentration of	n control: m ³ N/h	Use of town sulfur	gas with zero	No smoke	and soot	No smoke generatin		No smoke generatin			e and soot og facilities		e and soot Ig facilities	
	NOx	Concentratio	on control: ppm	Concentration	- 34	generaun	y iaonuds	generaun	y iaciii.id5	generatin	y iaciii.id5	generaur	iy iaciilids	generaur	y aunues
	Soot and dust	Concentratior	n control: g/m³N	Concentration _											

*1 Concentration control: Control value (including agreed value) of major smoke and soot generating facilities and the measurement value (maximum value). *2 Smoke and soot generating facilities: Those subject to the laws concerning emissions into the atmosphere.

			Unit	Control value	Measurement										
		pН	Minimum value, Maximum value	_	_	_	_	—	—	—	_	—	_	—	—
		BOD	mg/L	_	_	_	—	_	_	_	_	_	_	_	_
		COD	mg/L	—	_	_	—	_	_	_	_	_	_	—	_
	Public	Nitrogen	mg/L	_	_	—	—	—	—	—	_	—	_	—	—
	olicv	Phosphorus	mg/L	—	_	_	—	_	_	_	_	_	-	_	_
_	water	Hexavalent chromium	mg/L	—	_	_	—	_	_	_	_	_	_	—	_
Draii	er ar	Lead	mg/L	—	—	_	—	—	—	—	—	—	_	—	—
Drainage ^{*3}	areas	COD, total emission control	kg/day	—	—	—	—	—	—	—	_	—	—	—	—
ω		Nitrogen, total emission control	kg/day	—	—	—	—	_	_	_	—	_			—
		Phosphorus, total emission control	kg/day	_	—	—	—	_	_	_	_	_	_	_	—
	Sewerage	pН	Minimum value, Maximum value	6.0~9.5	7.5	6.0~9.0	8.3			6.5~9.0	6.5, 8.8				
	erag	BOD	mg/L	900	70.1	250	26.8	(Sewage of	discharge)	_	_	(Sewage (discharge)	(Sewage of	discharge)
	e lin	COD	mg/L	—	—	—	—	,		1,000	230	,		,	0.1
	lines	SS	mg/L	900	28.4	250	23.0			—	_				

*3 Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value). Results of chemical substances reporting

							0	
2	eno	rtina	to I	National	Pollutant	Release	Inventory (Canada)	(Unit:

Business site	Substance name	Control law number	Release quantity	Amount of off-site recycled waste	
	Chromium (and its compounds)	NA-04	185	68	
	Manganese (and its compounds)	NA-09	189	4,374	
Kubota Materials Canada Corporation	Nickel (and its compounds)	NA-11	73	189	
	PM10-Particulate Matter≦10µm	NA-M09	16,077	0.0	
	PM2.5-Particulate Matter≦2.5µm	NA-M10	15,996	0.0	
oxics Release Inventory (TRI) Program (U.S.	EPA) (Unit: kg/year)				
Business site	Substance name	CAS Number	On-site disposal and amount of emissions	Recycled Off-site	Off-site disposal and amount of emissions
	Chromium	7440-47-3	0.15	0.0	0.0
Kubota Industrial Equipment Corporation	Manganese	7439-96-5	97.98	0.03	0.0
oota Industrial Equipment Corporation	Nickel	7440-02-0	0.06	0.0	0.0
	INICICI	1440 02 0			
	Chromium	7440-47-3	545	19,105	0.0
					0.0
Kubota Manufacturing of America Corporation	Chromium	7440-47-3	545	19,105	
Kubota Manufacturing of America Corporation	Chromium Manganese	7440-47-3 7439-96-5	545 2,225	19,105 76,421	0.0

Man

Ш

nic Rep

Data on KUBOTA Group Overseas Production Sites (Continued from page 50-19)

	Reg	gion			Eu	rope													Asia										
Item			Business site		nd Group nnep B.V.		and Group hinde AS	Machinery (S	Agricultural SUZHOU) Co., td.	Kubota Co Machinery (W		Environment	Guozhen tal Engineering) Co., Ltd.		TA Corporation Iquarter)		A Corporation korn Plant)		KUBOTA echnology	KUBOTA Eng	ine (Thailand)	Kubota Precis (Thai		P.T.Kubota	Indonesia	P.T.Metec	Semarang		Saudi Arabia mpany
INPUT																													
			Unit	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	Heat conversion GJ	Volume of use	e Heat conversion GJ
Energy	Fossil fuel	e	Crude oil equivalent kL	946	36,664	1,226	47,513	1,499	58,085	68	2,640	13	520	237	9,199	244	9,475	16	632	98	3,813	15	595	342	13,240	500	19,363	3,240	125,592
	Purchased el	lectricity	MWh	2,348	23,405	5,680	56,630	9,198	91,704	2,130	21,238	2	23	6,778	67,580	21,215	204,340	21,216	211,526	3,045	30,360	231	2,306	2,426	24,192	5,548	55,312	0	0
	To	otal e	Crude oil equivalent kL	1,550	60,069	2,687	104,143	3,865	149,789	616	23,878	14	543	1,981	76,779	5,516	213,815	5,474	212,158	882	34,173	75	2,901	966	37,432	1,927	74,675	3,240	125,592
Water usage		t	thousand m ³	8	3	1	26	(90	6	3		3		58	1	37		71	1	3	7	7	33	3	4	14		7
OUTPUT																													
CO ₂ emission	CO ₂ emission energy source		tons CO _{2e}	2,7	762	4,	842	10	,188	1,7	739		37	4	008	10	497	10),930	1,8	320	15	59	2,7	15	5,2	291	8	3,419
Waste	Discharge am	nount	tons	30	06	2	47	6	602	5	2		0		801	5,)39	8	,969	4	0	4	0	g)	3	13		623
VVdSte	Recycling rati	io	%	94	1.7	9	7.6	8	3.5	77	7.1			ç	5.6	9	1.6	8	32.1	82	.5	74	1.0	96	.5	92	2.9		0.0
	Main smoke a	and soot generat Unit	Ŭ.					Control Co	oilers ontrol alue Measuremer	Drying f Control Cor content val	ntrol Massuramor	t		Control C	furnaces ontrol Measuremer	Control Co	furnaces ntrol Measuremer	Electric t Control C content	c Furnaces control value	+						Control Co	furnaces ontrol alue Measurement		
Exhaust gas	SOx	Concentration c	ontrol: m ³ N/h	No smoke and faci	soot generating	No smoke and	l soot generating ilities	(mg/m ³) 1	00 2.0	Concentration 4.	72 2.18		d soot generating	Concentration control	500 1.3	Concentration 6	60 1.23		500 5.7	No smoke and		No smoke and facil	soot generating	No smoke and s			00 23.04		nd soot generating
	NOx	Concentration of	control: ppm	IdCli	iues	Idu	anues	Concentration 4	400 28.3	Concentration			aiities	Concentration control	- 4	Concentration 2	00 1.26	Concentration control			lues	IdOli	iilies	IdCIII	ues	(mg/m ³) 10	000 18	la.	icilities
	Soot and dust	Concentration c	ontrol: g/m ³ N					Concentration control	50 34	Concentration				Concentration control	0.1 0.032	Concentration O	32 0.013	Concentration control	0.02 0.0006							Concentration O.	.35 0.016		
							soot generating ons into the at		nd the measur	rement value (r	maximum va	lue).																	
			Unit	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement
		14	linimum voluo		ĺ				1																				

		Unit	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement	Control value	Measurement												
	рН	Minimum value, Maximum value	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.0~9.0	7.0	6.0~9.0	8.5	_	_
	BOD	mg/L	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	—	_	_	_	—	100	17.0	100	86.0	—	_
	COD	mg/L	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	—	_	_	_	—	250	39.0	250	153.3	—	_
	P Nitrogen	mg/L	_	_	_	_	_	_	_	—		_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	—
	Phosphorus	mg/L	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	—	_	_	_	—	—	_	_	_	_	_
	Hexavalent chromium	mg/L	_	-	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	0.1	0.0003	0.5	Non-detected	_	—
Drair	a Lead	mg/L	—	-	—	_	_	_	_	—	_	_	_	_	_	_	_	—	_	—	_	—	0.1	0.005	0.1	Non-detected	—	_
1age ^{*3}	COD, total emission control	kg/day	_	_	—	—	_	_	_	—	_	_	-	-	_	_	_	_	_	—	—	—	—	—	—	-	—	_
	Nitrogen, total emission control	kg/day	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
	Phosphorus, total emission control	kg/day	_	_	_	—	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	—	_	—	_	_	_
	PH	Minimum value, Maximum value											6.0~9.0	7.4, 9.0									—	—	—	-		
	BOD	mg/L	(Sewage	discharge)	(Sewage	discharge)	(Sewage c	discharge)	(Sewage o	discharge)	(Sewage di	scharge)	450	280	(Sewage	discharge)	(No external wa	ater discharge)	(No external w	ater discharge)	(Sewage	discharge)	_	—	—	—	(Sewage d	discharge)
	COD	mg/L	(1111)	5.,	(*****)**	3.,	(****)		(*****)	<u> </u>	(*****)		600	259	(*****)	5.7		5.,		5.,	(*****)*		_	—	_	_	(*********	
	SS SS	mg/L											_	_									_	_	_	_		

*3 Concentration control: Control value (including agreed value) by plant and the measurement value (maximum value).

Economic Report

Social Report

Manager

ent

Calculation Standards of Environmental Performance Indicators in KUBOTA REPORT 2013

E	nvironmental performance indicators	Unit	Calculation method
	Total energy input ^{*1} (TJ:10 ¹² J)	TJ	 [Calculation formula] • Amount of purchased electricity x per-unit heat value + Σ[amount of each fuel] • Per-unit heat value is determined in accordance with the Enforcement Regulation for the Law Concerning the Rational Use of Energy • Purchased electricity and fossil fuel used at business sites • Transportation fuel used in distribution (business sites in Japan)
Energy an	CO2 emissions*1	kilotons CO2e	[Calculation formula] • Amount of purchased electricity x CO2 emission coefficient + Σ [amount of each fuel consumed at business sites x per-unit heat value of each fuel x CO2 emission coefficient of each fuel] + non-energy source greenhouse gas emissions • Non-energy source greenhouse gas emissions = CO2 emissions from non-energy sources + non-CO2 greenhouse gas emissions • Non-energy source greenhouse gas emissions = CO2 emissions is based on the Guidelines for Calculating Greenhouse Gas Emissions from Businesses of Japan's Ministry of the Environment. [CO2 emission coefficients] FY1991 Based on the Report on Survey of Carbon Dioxide Emissions (Japan's Environment Agency 1992) and the Guideline for Measures to prevent Global Warming (Japan's Environment Agency 1993). CO2 emissions=carbon equivalent (tons C) x 3.664 FY2009 Fuel: Based on the Manual for Calculation and Report of Greenhouse Gas Emissions (Ver2.4) (Japan's Ministry of the Environment and Ministry of the Coronry, Trade and Industry March 2009) Electricity: Data for Japan are emission coefficients published by electricity utilities Overseas data is based on the Report on the CO2 Emissions Intensity of the Power Sector of Various Countries -Ver.3 (the Japan Electrical Manufacturers' Association June 2006) From FY2010 to FY2013 Fuel: Based on the Manual for Calculation and Report of Greenhouse Gas Emissions (Ver.2.4) (Coefficients used after revision in March 2010; Japan's Ministry of the Environment and Ministry of the Drower Sector of Various Countries -Ver.3 (the Japan Electricical Manufacturers' Association June 2006)
Energy and CO2-related	CO2 emissions per unit of sales	tons CO _{2e} / billion¥	 [Calculation formula] • Group-wide CO₂ emissions per unit of sales = total CO₂ emissions / consolidated net sales • KUBOTA Corporation production site CO₂ emissions per unit of sales = KUBOTA Corporation production site CO₂ emissions / KUBOTA Corporation non-consolidated net sales [Calculation formula] • [Group-wide] CO₂ emissions per unit of sales for each fiscal year / FY2009 CO₂ emissions per unit of sales x 100 [KUBOTA Corporation production site] KUBOTA Corporation production site CO₂ emissions per unit of sales for
Δ			each fiscal year / KUBOTA Corporation production site CO2 emissions per unit of sales in FY1991 x 100 (as shown in the graph on page 49 of KUBOTA REPORT 2013) [Calculation formula] • Σ [Heavy freight transportation (tons) × distance traveled (km)]
	Freight traffic	ton-km	Calculation scope] • Transportation in Japan
	CO2 emissions during distribution	kilotons CO2e	[Calculation formula] • Truck transportation Fuel consumption during transportation = freight traffic x fuel consumption per ton-kilometer x per-unit heat value CO ₂ emissions = fuel consumption during transportation x CO ₂ emission coefficient x 44 / 12 • Other than truck transportation • Other than truck transportation • Fuel consumption during transportation = freight traffic x fuel consumption per ton-kilometer x per-unit heat value CO ₂ emissions = freight traffic x CO ₂ emissions per ton-kilometer by means of transportation • The method of calculation is based on the ton-kilometer method stipulated under the Manual for Calculation and Report of Greenhouse Gas Emissions (Ver.2.4) (Japan's Ministry of the Environment and Ministry of Economy, Trade and Industry March 2009)
	CO2 emissions during distribution per unit of	tons CO2e/ billion¥	[Calculation formula] • CO ₂ emissions during distribution / consolidated net sales
	sales	%	[Calculation formula] • CO ₂ emissions per unit of sales of each fiscal year / CO ₂ emissions per unit of sales in FY2009 x 100 (as shown in the graph on page 50-6) of KUBOTA REPORT 2013)
	Scope 3 emissions (disposal and treatment of waste; employee business trips)	kilotons CO _{2e}	 [Calculation formula] • Disposal and treatment of waste: CO₂ emissions = Σ [(amount of waste discharge by type) x (emissions per unit)] • Employee business trips: CO₂ emissions =Σ [(transportation expenses paid by mode of transport) x (emissions per unit)] • The calculation method is based on the Basic Guidelines regarding the Calculation of Greenhouse Gas Emissions throughout the Supply Chain (Ver. 2.0) and the Emissions per Unit Database for the Purpose of Calculating the Greenhouse Gas and Other Emissions of Organizations throughout the Supply Chain (Ver. 2.0) (Japan's Ministry of the Environment and Ministry of Economy, Trade and Industry March 2013) [Calculation scope] • The amount of transportation expenses paid is the portion traveled based on airline tickets (domestic and international) and railway tickets (domestic) issued by Group Companies
	Amount of waste, etc. discharge ^{*1}	tons	[Calculation formula] • Sales of valuable resources + amount of waste discharge
	Amount of waste discharge ^{*1}	tons	 Calculation formula Amounts of resource recycling and waste reduction + landfill disposal Amount of industrial waste discharge + amount of general waste discharged from business activities
	Waste discharge per unit	tons CO _{2e} / billion¥	[Calculation formula] • Amount of waste discharge / consolidated net sales
	of sales ^{*1}	%	[Calculation formula] • Waste discharge per unit of sales of each fiscal year / waste discharge per unit of sales in FY2009 x 100 (as shown in the graph on page 49 of KUBOTA REPORT 2013)
Waste-related	Amount of landfill disposal ^{*1} Ratio of business sites that have achieved zero emissions	tons %	 [Calculation formula] • Direct landfill + final landfill following external intermediate treatment [Calculation formula] • Number of the production sites certified by the Environmental Protection Department of KUBOTA as having achieved the zero emissions (landfill ratio of 0.5% or less) / number of the production sites in Japan and overseas x 100 • Landfill ratio(%) = amount of landfill disposal / amount of waste, etc. discharge x 100 • Number of production sites in Japan and overseas: FY2009~FY2011: 30 sites, FY2012: 33 sites, FY2013: 39 sites
	Ratio of recycled waste (excluding volume reduction)	%	[Calculation formula] • (Sales of valuable resources + resource recycling) / (waste, etc. discharge - volume reduction in intermediate treatment by outside contractors) x 100
	Amount of construction waste, etc. discharge	tons	[Calculation formula] • Amount of construction waste discharge (Including construction waste other than specific construction materials) + sales of valuable resources (generated from construction) [Calculation scope] • Business sites in Japan
	Recycling rate of construction waste	%	[Calculation formula] • (Sales of valuable resources + resource recycling + amount reduced (with heat recovery)) / amount of construction waste, etc. discharge (including sales of valuable resources) x 100

Er	nvironmental performance indicators	Unit	Calculation method
	Water consumption *1	million m ³	[Calculation formula] • Total amount of service water, industrial water and groundwater consumption
	Water consumption per	m ³ /million¥	[Calculation formula] • Water consumption / consolidated net sales
5	unit of sales	%	[Calculation formula] • Water consumption per unit of sales for each fiscal year / Water consumption per unit of sales for FY2009 x 100 (as shown in the graph on page 49 of KUBOTA REPORT 2013)
Water-related	Wastewater discharge (public water areas, sewage lines) ⁺¹	million m ³	[Calculation formula] • Total wastewater discharge to public water areas and sewage lines (including rain and spring water)
ed	Amount of COD, nitrogen and phosphorus discharge	tons	 [Calculation formula] • COD, nitrogen or phosphorous concentration (mg/L) x amount of effluent discharged to public water area (m³) x 10⁻⁶ • Business sites subject to total emission control in Japan
	Amount of recycled water	million m ³	[Calculation formula] • Amount of water purified in on-site effluent treatment facilities and recycled (excluding the recycled cooling water used)
	Amount of PRTR- designated substances handled	tons	 [Calculation formula] • Total amount of chemical substances handled, which are designated as Class I under the Act on Confirmation, etc. of Release Amounts of Specific Chemical Substances in the Environment and Promotion of Improvements to the Management Thereof (the PRTR Law) whose amount handled by each business site is one ton or more (or 0.5 ton or more for Specific Class I Designated Chemical Substances) per year [Calculation scope] • Eusiness sites in Japan (business site subject to legal notification only) • FY2013 data includes designated chemical substances derived from recycled resources in accordance with revisions to the Manual for PRTR Release Estimation Methods in the Steel Industry (Ver. 12 FY2013 use)
	Amount of PRTR- designated substances released and transferred	tons	 [Calculation formula] • Total release and transfer amount of the chemical substances which are designated as Class I under the PRTR Law and whose annual total amount handled by each business site is one ton or more (or 0.5 ton or more in case of Specific Class I Designated Chemical Substances). • Amount released = amount discharged to the atmosphere + amount discharged to public water areas + amount discharged to soil + amount discharged to by landfill in the premises of the business site • Amount transferred = amount discharged to a swerage + amount transferred out of the business site as waste • The amount of each substance released and transferred is calculated in accordance with Manual for PRTR Release Estimation Methods Ver. 4.1 (March 2011) of the Ministry of the Environment and the Ministry of Economy, Trade and Industry, and Manual for PRTR Release Estimation Methods in the Steel Industry Ver. 12 (March 2013) of the Japan Iron and Steel Federation. [Calculation scope] • The same scope of calculation as the amount of PRTR-designated substances handled
	Amount of PRTR-	kg/billion¥	[Calculation formula] • Amount of PRTR-designated substances released and transferred / consolidated net sales
Chemica	designated substances released and transferred per unit of sales	%	[Calculation formula] • PRTR-designated substances released and transferred per unit of sales of each fiscal year / PRTR-designated substances released and transferred per unit of sales in FY2009 x 100 (as shown in the graph on page 50 of KUBOTA REPORT 2013)
Chemical substance-related	Amount of chemical substances handled "	tons	 [Calculation formula] • Total amount of Chemical substances handled at business sites covered by laws and regulations + the total amount of VOCs handled [Calculation scope] • Overseas business sites • The subject laws and regulations are the Toxics Release Inventory (TRI) Program, US EPA, the European Pollutant Release and Transfer Register (E-PRTR), and Reporting to the National Pollutant Release Inventory (Canada) • VOCs are toluene; ethylbenzene; xylene; 1, 2, 4-trimethylbenzene, 1, 3, 5-trimethylbenzene that are handled in amounts of one ton or more per year (only toluene, ethylbenzene, xylene in FY2012)
be	Chemical substance released ⁻¹	tons	[Calculation formula] • The total amount of chemical substances released at business sites covered by laws and regulations + the total amount of VOCs released [Calculation scope] • The same scope of calculation as the amount of chemical substances handled
	SOx emissions *2	tons	 [Calculation formula] • Amount of fuel consumed (kg) x sulfur content in the fuel (Wt %) / 100 x 64 / 32 x [(1 - desulphurization efficiency) / 100] x 10⁻³, or amount of SOx emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 64 / 22.4 x 10⁻³ [Calculation scope] • Until FY2010, the smoke and soot generating facilities of business sites in Japan as defined by the Air Pollution Control Law. • From FY2011, the facilities of overseas business sites subject to the law are included
	NOx emissions *2	tons	 [Calculation formula] • NOx concentration (ppm) x 10⁻⁶ x amount of gas emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 46 / 22.4 x 10⁻³ [Calculation scope] • The same scope of calculation as SOx emissions
	Soot and dust emissions*2	tons	[Calculation formula] • Soot and dust concentration (g/m ³ N) x amount of gas emitted per hour (m ³ N/h) x annual operation hours of the relevant facility (h) x 10 ⁻⁶ [Calculation scope] • The same scope of calculation as SOx emissions
	Ratio of models with reduced RoHS- designated substances	%	[Calculation formula] • Ratio of the value of shipped products that contain RoHS-designated substances (lead, hexavalent chromium, mercury, cadmium, PBB and PBDE) in less than the threshold limits (except products used for applications exempted from the RoHS Directive and ELV Directive) against the total value of products shipped (excluding plants, facilities, construction, services and software development).
	CO ₂ eco-efficiency indicators	million¥/ tons CO2e	[Calculation formula] • Consolidated net sales / CO ₂ emissions
0	Waste eco-efficiency indicators	million¥/ hundred kg	[Calculation formula] • Consolidated net sales / amount of waste discharge
Other	Chemical substance eco-efficiency indicators	million¥/kg	[Calculation formula] • Consolidated net sales / total amount of PRTR-designated substances released and transferred by production sites in Japan
	Green purchasing ratio	%	[Calculation formula] • Amount spent to purchase eco-friendly office supplies (paper, stationery, etc.) / total amount spent to purchase items subject to green purchasing x 100 • Green products are items purchased through the office supply procurement site operated by Group companies • Calculation scope] • Business sites in Japan

*1 Of the overseas subsidiaries added to the scope of compilation in FY2013, calculations for the Kverneland group are based on estimates, except for its four major production companies (covering more than 80% of the revenues in FY2013 of the Kverneland group production subsidiaries). *2 Of the overseas subsidiaries added to the scope of compilation in FY2013, only the data for the four major production companies of the Kverneland group (covering more than 80% of the revenues in FY2013 of the Kverneland group production subsidiaries) are included. This is because estimates are difficult to ascertain for the indicators in Note 2 due to their attributes.

Mar

Ш

Re

SS

ial Rep on

Environ Report

Supplemen Information