

Environmental Management Basic Policy

In line with its brand statement, "For Earth, For Life," while protecting the beauty of the global environment, the KUBOTA Group is committed to the continued support of people's affluent lifestyles. Through business, the Group contributes to building a sustainable society.

Environmental Charter / Action Guidelines

The KUBOTA Group Environmental Charter

- The KUBOTA Group aspires to create a society where sustainable development is possible on a global scale.
- The KUBOTA Group contributes to the conservation of global and local environments through its environmentally friendly operations, products, and technologies.

The KUBOTA Group Environmental Action Guidelines

1 Environmental Conservation Efforts in All Business Activities

- (1) We promote environmental conservation measures in all stages of our corporate activities, including product development, production, sales, physical distribution, and service.
- (2) We also request that our suppliers understand the importance of environmental conservation efforts and cooperate in this regard.

2 Global Environmental Conservation

- (1) We promote global environmental conservation measures for stopping climate change, creating a recycling- based society, and controlling chemical substances.
- (2) We promote global environmental conservation by providing technologies and products contributing to solving environmental problems.
- (3) We strive to ensure our corporate activities are friendly to the natural environment and biodiversity.

3 Environmental Protection to Create a Symbiotic Relationship with Local Societies

- (1) We make efforts in the reduction of environmental risks and promote our business activities with proper consideration for the protection of local environments, including pollution prevention.
- (2) We actively participate in environmental beautification/education activities in local communities.

4 Our Voluntary and Organized Efforts in Environmental Conservation

- (1) By introducing the environmental management system and establishing voluntary targets and action plans, we work on our daily business operations.
- (2) We endeavor to enhance environmental awareness through active environmental education/enlightenment activities.
- (3) We actively provide the stakeholders with environment-related information.
- (4) We collect stakeholders' opinions broadly through environmental communication, and reflect the findings in our environmental activities.

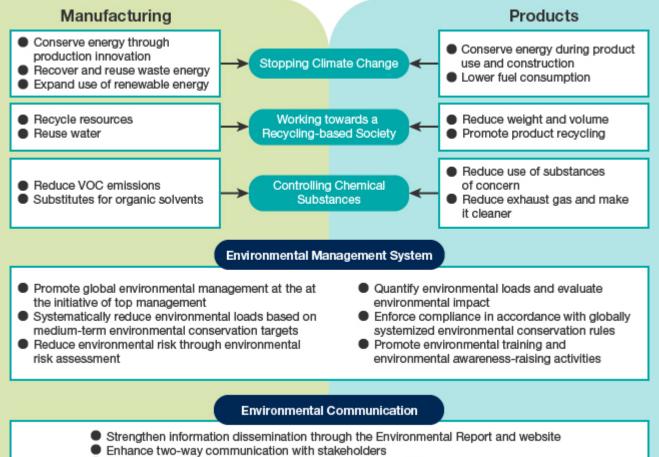
Message from the Environmental Conservation Control Officer

The mission of the KUBOTA Group is to continuously support the future of the Earth and people under the slogan "For Earth, For Life" and contribute to the conservation of the global environment through "Made by Kubota" manufacturing activities. The Environmental Management Strategy Committee was established in FY2015 for the purpose of raising the Group's level of environmental conservation efforts, such as accelerating environmental management, expanding KUBOTA's lineup of eco-conscious products, and reducing environmental load and environmental risk.

This fiscal year was the last year of the Medium-term Environmental Conservation Targets for FY2016. Therefore, we are currently preparing new targets for the next medium-term period. In preparation for the next stage, we are proactively taking on new challenges and vitalizing our activities. We will continue working towards building a sustainable society and promoting environmental management.

Kenshiro Ogawa Director and Senior Managing Executive Officer General Manager of Manufacturing Engineering Headquarters (Environmental Conservation Control Officer)

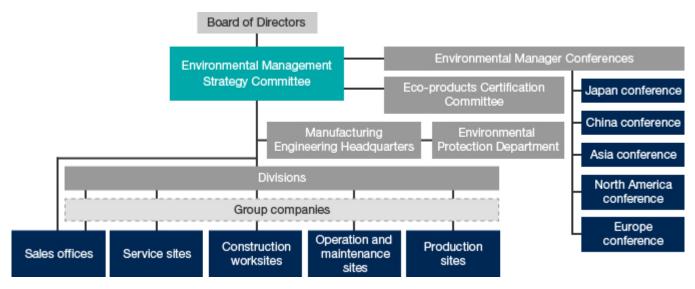
Basic Direction of Corporate Environmental Management / Key measures


Basic Direction of Corporate Environmental Management

As stipulated in the Basic Direction of Corporate Environmental Management prepared for the KUBOTA Group, three initiatives have been established: "Stopping Climate Change," "Working towards a Recycling-based Society" and "Controlling Chemical Substances."

Key Measures

Based on the Basic Direction of Corporate Environmental Management, the KUBOTA Group engages in environmental management with key measures focused on manufacturing and products.


Participate in regional environmental conservation activities

Environmental Management Promotion System

In FY2015, the Environmental Management Strategy Committee was newly established to take a more strategic and innovative approach to environmental management by management-led promotion.

In addition, Environmental Manager Conferences, are held in China, Asia, North America and Europe to globally advance environmental management across the KUBOTA Group.

Organization structure

Environmental Management Strategy Committee

The Environmental Management Strategy Committee is chaired by KUBOTA's executive vice president and is comprised of executive officers. The Committee discusses the direction of the KUBOTA Group's environmental management for the medium- and long-term. It determines issues such as items and plans that should be carried out in order to reduce environmental impact and risk, and what products to add to extend the lineup of environmentally-friendly products. It also promotes management based on the plan-do-check-action (PDCA) cycle by assessing and analyzing the progress of the entire

Environmental Management Strategy Committee

Group's environmental conservation activities and reflecting the results when formulating new plans and policies. We will continue to promote swift environmental management led by members at the management-level.

Environmental Manager Conferences

In FY2015, KUBOTA held Environmental Manager Conferences for the Chinese, Asian and Japanese regions. Environmental managers from eight companies with business sites in China and seven companies with production sites in East Asian countries other than China and Japan attended the Environmental Manager Conferences held for the Chinese and Asian regions, respectively. Environmental managers from Japan's mother plant also attended.

Each company presented case studies, and group debate was held on the theme of environmental management, thus providing an opportunity to reaffirm the KUBOTA Group policy and share excellent case studies. In order to strengthen the environmental management of the entire KUBOTA Group, we will continue raising the level of environmental conservation activities at each site through gatherings such as these.

Environmental Manager Conferences held for Chinese regions Kubota Agricultural Machinery (SUZHOU) Co., Ltd.

Environmental Manager Conferences held for Asian regions SIAM KUBOTA Corporation Co., Ltd.

Medium-Term Environmental Conservation Targets and Results

To properly execute the Basic Direction of Corporate Environmental Management and systematically promote environmental conservation activities in the production and product development stages, KUBOTA established the FY2016 Mid-term Environmental Conservation Targets. As the following table shows, we practically achieved the targets for FY2016 in FY2015.

lssues	Actions	Management Indicators ^{*2}	Scope	Base FY	Target for FY2016 ^{*6}	Results of FY2015 ^{*6}	Self- evaluation ^{*7}	Achievement Status	
Stopping climate	Reduce CO ₂	CO ₂ emissions per unit of production ^{*3}	Global production	2009	▲14%	▲26.0%	Ø	We are making progress on energy conservation in production	
	Energy conservation	Energy use per unit of production	Global production	2009	▲14%	▲23.4%	O	facilities, air handling systems and lighting, etc.	
Working towards a Reduce recycling- based society	Waste discharge per unit of production	Global production	2009	▲14%	▲30.6%	O	We are making progress on waste separation and introduction of returnable containers.		
		Resource recycling ratio ^{*4}	Production sites in Japan	_	99.5% or more	99.8%	0	We are maintaining a resource recycling ratio above the target.	
			Overseas production sites	_	90.0% or more	89.8%	Δ	Landfill disposal was reduced as the result of changing contractor consignment. We are now very close to achieving our target.	

lssues	Actions	Management Indicators ^{*2}	Scope	Base FY	Target of FY2016 Results ^{*6}	FY2015 ^{*6}	Self- evaluation ^{*7}	Achievement Status
Working towards a recycling- based society	Conserve water resources	Water consumption per unit of production	Global production	2009	▲21%	▲39.1%	O	We are making progress on water conservation by the installation of waste water recycling facilities.
Controlling chemical substances	Reduction of VOCs ^{*1}	VOC emissions per unit of production	Global production	2009	▲21%	▲29.4%	O	We are making progress on VOC reduction by improving coating efficiency and use of non-VOC paints
Improve environmental performance of products	Expand line of Eco- Products	Sales ratio of Eco- Products ^{*5}	Global	-	40%	36.6%	Δ	In FY2015, we certified 43 products as Eco- Products.

- *1 VOCs comprise the six VOCs that are most prevalent in emissions from the KUBOTA Group: xylene, toluene, ethylbenzene, styrene, 1, 2, 4-trimethylbenzene, and 1, 3, 5-trimethylbenzene.
- *2 The figures per unit of production represent the intensity of the environmental load per unit of production money amount. The exchange rate of the base fiscal year is used when translating the production value of overseas sites into yen.
- *3 CO₂ emissions include greenhouse gases from non-energy sources. We use the emissions coefficient for electricity of the base fiscal year in our calculation of CO₂ emissions from energy sources.
- *4 Resource recycling ratio (%) = (Sales volume of valuable resources + External recycling volume) / (Sales volume of valuable resources + External recycling volume + Landfill disposal) \times 100. Heat recovery is included in external recycling volume.
- *5 Sales ratio of Eco-Products (%) = Sales of Eco-Products / Sales of products (excluding construction work, services, software, parts and accessories) × 100

*6 \blacktriangle is a symbol used to express "minus".

*7 Self-evaluation rating symbols: \odot Target exceeded (by at least 20%) OTarget reached riangle Target not yet reached

Environmental information in the online version of the KUBOTA REPORT 2015 (Full Report Edition PDF) has received third-party assurance from KPMG AZSA Sustainability Co., Ltd. Indicators covered by this assurance are marked with the " \mathcal{O} " symbol.

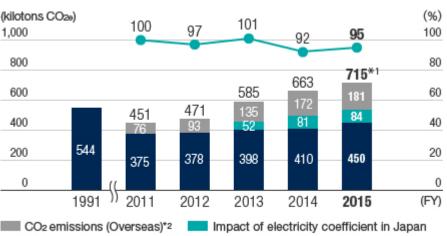
As An "Eco-First Company"

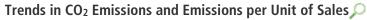
In May 2010, the KUBOTA Group was certified by the Janan's Minister for Environment as an "Eco-First Company" due to its commitments to environmental conservation.

Moreover, in June 2014, the KUBOTA Group created the FY2016 Medium-Term Environmental Conservation Targets with a commitment to achieving the following five objectives, and was recertified as an "Eco-First Company." We will aggressively work toward achieving these objectives based on this new commitment.

- Work towards a recycling-based society
- Stop climate change
- Reduce emission into the atmosphere
- Develop environmentally friendly products
- Conserve biodiversity

Eco-First Mark

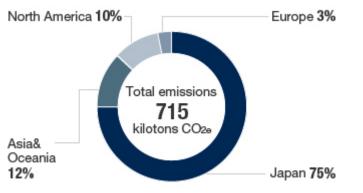

See here for details on Eco-First Company certification


Stopping Climate Change

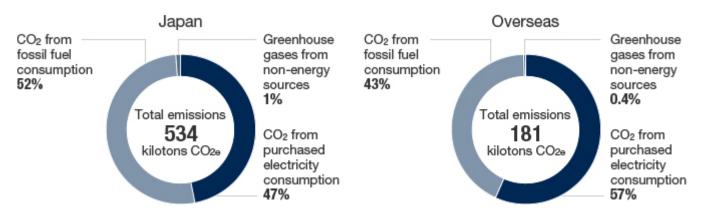
The Fifth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC), states that the 'warming of the climate system is unequivocal' and there is an extremely high possibility that the impact of human activities is one of the contributing factors. The KUBOTA Group is engaged in initiatives to reduce CO₂, placing a focus on energy-saving activities in order to prevent global warming.

CO₂ Emissions (scope 1 and scope 2)

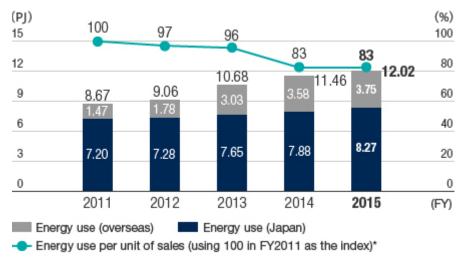
In FY2015, CO₂ emissions were 715 kilotons CO₂e, an increase of 7.9% compared to the previous fiscal year. We made efforts to conserve energy such as converting to alternative fuels and upgrading to highly efficient equipment. However, CO₂ emissions increased owing to increasing production at cast iron production sites in Japan, expanding aggregation scope in Japan and increasing production overseas. Additionally, CO₂ emissions per unit of sales increased 2.6% compared to the previous fiscal year.



CO₂ emissions (Business sites in Japan, only KUBOTA production sites for FY1991) *2


CO2 emissions per unit of sales (using 100 in FY2011 as the index) *3

- *1 CO₂ emissions (715 kilotons CO₂e) include portions of CO₂ that were not released into the atmosphere but absorbed as carbon into products such as iron pipe (33 kilotons CO₂e).
- *2 CO₂ emissions after FY2011 include greenhouse gases from non-energy sources.
- *3 CO₂ emissions per unit of consolidated net sales.


CO₂ Emissions by Region (FY2015 results)

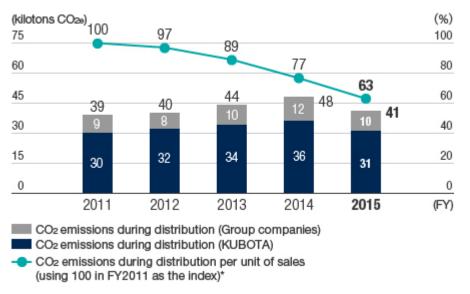
CO2 Emissions by Emission Source (FY2015 results)

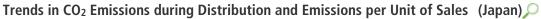
Trend in Energy Use by Business Sites,

*Energy use per unit of consolidated net sales.

Voice Solar Panels Installed on Plant Roof to Reduce CO₂ Emissions

Kubota Construction Machinery (WUXI) Co., Ltd. installed 8,808 solar panels on the roof of its plant and began generating solar power in April 2015. The maximum output of the panels is 2,233kWp, and annual electricity generation of approximately 2,300MWh is anticipated. This amounts to about 60% of all power consumed by the company in 2013 and about 50% of overall energy consumed. When converted to CO₂ emissions, this equates to an annual reduction of approximately 2,293 tons*. Moreover, the gaps between the solar panels and the roof serve as a heat insulation layer, alleviating the heat of summer and the cold of winter. Therefore, it is anticipated that energy consumption related to air-conditioning will be reduced as well.


We are effectively utilizing the roof of the plant to promote the use of clean reusable energy, thereby becoming a plant that can be trusted by the local community.



Feng Luo Safety, Health and Environment Section Manager Kubota Construction Machinery (WUXI) Co., Ltd.

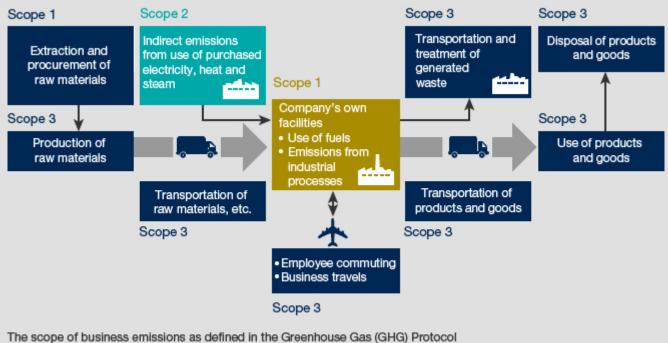
CO₂ Emissions during Distribution

In FY2015, CO₂ emissions during distribution were 41 kilotons CO₂e, a reduction of 15.0% compared to the previous fiscal year. Additionally, CO₂ emissions during distribution per unit of sales decreased 19.2%. This was the result of improved transportation efficiency by shipping mixed cargo and reducing transportation distance by routing more exports to ports that are closer to the actual destination.

*CO₂ emissions during distribution per unit of consolidated net sales.

Trends in Freight Traffic (Japan)

CO₂ Emissions throughout the Value Chain


The KUBOTA Group makes concerted efforts to figure out CO₂ emissions throughout the value chain in addition to its business sites. Following guidelines*, we calculate CO₂ emissions based on Scope 1, Scope 2 and Scope 3, and continue to expand the categories in the scope3 of our calculation of CO₂ emissions.

CO₂ Emissions in Each Stage of Value Chain (FY2015 results)

Classification		Scope of calculation	CO ₂ emissions (kilotons CO ₂ e)
	Direct	Use of fossil fuels	355
Emissions of the KUBOTA Group's	emissions (Scope 1)	Non-energy-related greenhouse gas emissions	8
business sites	Indirect emissions (Scope 2)	Purchased electricity use	353
		Extraction, production and transportation of fuels for generation of electricity used \wp	25
	Other indirect emissions (Scope 3)	Disposal of waste emitted from sites \wp	22
Upstream and downstream emissions		Employee business trips	8
downstream emissions		Transportation of products and waste \wp	41
		Construction and Manufacturing of capital goods such as equipment	170
		Use of sold products	15,494

^{*} Basic guidelines for calculating greenhouse gas emissions in supply chains issued by the Japanese Ministry of the Environment and Ministry of Economy, Trade and Industry.

Example Activities of Each Scope

Scope 1: Direct GHG emissions from businesses themselves

Scope 2: Indirect emissions associated with the consumption of electric power, heat, and steam supplied by others

Scope 3: Other indirect emissions that occur in a Company's value chain

Working towards a Recycling-based Society - The 3Rs of Waste -

As a result of being a mass production, mass consumption and mass disposal society, we now face many problems such as the depletion of resources and increasing waste. The KUBOTA Group engages in activities such as the reduction and effective utilization of resources necessary for business activities, the reduction of waste and recycling.

Waste, Etc. from Business Sites

In FY2015, the waste discharge amount was 114 kilotons, an increase of 16.1% compared to the previous fiscal year. We made efforts to thoroughly sort waste and recycle valuable resources. However, the waste discharge amount increased owing to increased production at domestic cast iron production sites, expanding aggregation scope in Japan and increasing production overseas. The waste discharge amount per unit of sales also increased 10.4% compared to the previous fiscal year.

Discharge per unit of sales (using 100 in FY2011 as the index)*2

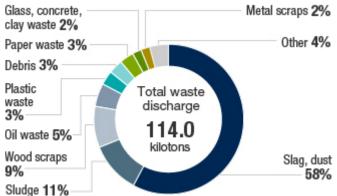
*1 Landfill disposal = Direct landfill disposal + Final landfill disposal following intermediate treatment

*2 Waste discharge per unit of consolidated net sales.

Waste discharge = Recycled resources / Volume reduction + Landfill disposal

The resource recycling ratio in FY2015 was 98.1% in Japan, down 0.9 points compared to the previous fiscal year. This was due to the influence of expanding the aggregation scope. On the other hand, overseas, the promotion of conversion into valuable resources and recycling led to increasing the recycling ratio by 9 points, totaling 89.0%.

*Starting in FY2014, heat recovery has been included in external recycling volume. The resulting difference compared with the previous method that did not include heat recovery is minor.


Waste recycling and treatment flow (FY2015 results)

* The amounts of resource recycling after treatment, volume reduction, and final landfill disposal were the results of surveys conducted by outside intermediate treatment companies.

Japan 67%

Waste, Etc. Discharge by Treatment Category (FY2015 results)

Total waste

discharge


114.0

kilotons

Asia &

19%

Oceania

Voice Switching to Environment-friendly Returnable Steel Crates to Minimize Waste

Kubota Industrial Equipment (KIE) is contributing to protecting the environment by using returnable crates for shipping L series tractors and all series loaders to the U.S market.

KIE has reduced the use of wood pallets by approximately 70% since the introduction of returnable crates. By using returnable crates, KIE is saving annually 3,600 tons of wood waste from going into landfills.

As our business grows even further, we will continue activities to minimize environmental load.

Bethany Vega Manager of Production Management Kubota Industrial Equipment Corporation

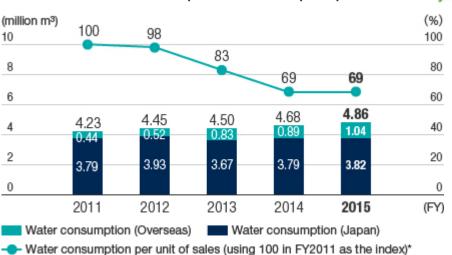
Waste Generated from Construction Work

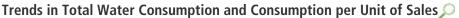
Trend in Discharge and Recycling Ratio of Construction Waste, Etc. (Japan) 🔎

Handling and Storage of Equipment Containing PCBs (in Japan)

Transformers, capacitors and other equipment containing polychlorinated biphenyls (PCBs) are properly delivered, stored and handled based on the Japanese Act on Special Measures concerning Promotion of Proper Treatment of PCB Wastes. Equipment containing PCBs are being disposed of steadily, being with sites for which acceptance at PCBs treatment facilities are available.

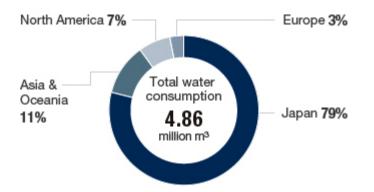
Equipment containing PCBs are locked in storage, periodically inspected, and environmentally audited as part of a thorough management system. We plan to properly process these wastes by the treatment deadline of March 2027.

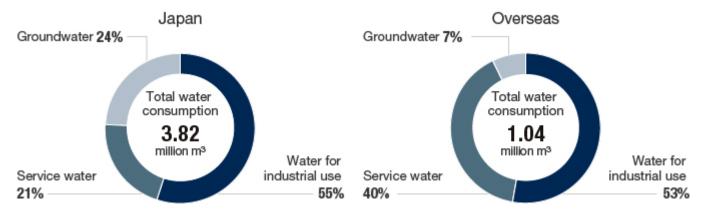

^{*} Recycling rate = [Sales of valuable resources + Resource recycling + Volume reduction (heat recovery)] / Amount of construction waste, etc. discharged (including sales of valuable resources) x 100 (%)


Working towards a Recycling-based Society - The 3Rs of Water -

The Organization for Economic Co-operation and Development (OECD) has reported that over 40% of the global population is projected to be living in river basins under severe water stress by the year 2050. The KUBOTA Group is involved in initiatives such as the effective utilization of water resources by promoting wastewater recycling.

Water Consumption in the Business Sites


In FY2015, water consumption was 4.86 million m³, an increase of 3.8% compared to the previous fiscal year. We made efforts to utilize water resources effectively by water conservation activities and recycling wastewater. However, water consumption increased due to an increase in overseas production volume. As a result, water consumption per unit of sales decreased 1.3% compared to the previous fiscal year.



* Water consumption per unit of consolidated net sales.

Water Consumption by Type (FY2015 results)

Voice Installation of Wastewater Treatment Equipment Utilizing Photocatalyst Processing

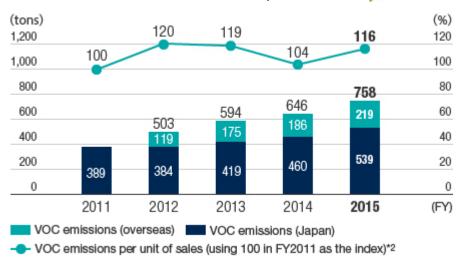
In 2014, the Amata Nakron plant of SIAM KUBOTA Corporation Co., Ltd. installed a photocatalyst treatment facility that breaks down and removes the substances in wastewater that cause highconcentration COD*.

The substances that cause COD are difficult to break down and hard to treat. Accordingly, treating the approximately 8,200 tons of high-concentration COD wastewater produced each year was previously outsourced to external service providers in its entirety. In an attempt to improve the situation, we began joint research with the wastewater treatment laboratory of Naresuan University in 2013. The project focused on developing a method for treating high-concentration COD wastewater using a photocatalyst process. After repeated verification experiments, a treatment facility was finally installed.

Using the new photocatalyst treatment process, the concentration was reduced to less than half of the standard value stipulated in the wastewater specifications of the industrial park. Furthermore, the installation of this facility has led to a reduction in waste and chemical usage, and significant cost cuts.

From right Soray lam-am, Somchai Limthongsittikhun, Patcharin Ngenbaion, Nattawat Yuttiwat Tractor Manufacturing Division, Safety Health and Environment Department SIAM KUBOTA Corporation Co., Ltd. (Amata Nakorn plant)

*Chemical oxygen demand

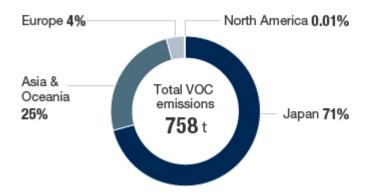

Controlling Chemical Substances

International frameworks are being established to minimize the negative impact of chemical substances on people's health and the environment. The KUBOTA Group engages in ongoing activities aimed at appropriately controlling and reducing the use of chemical substances.

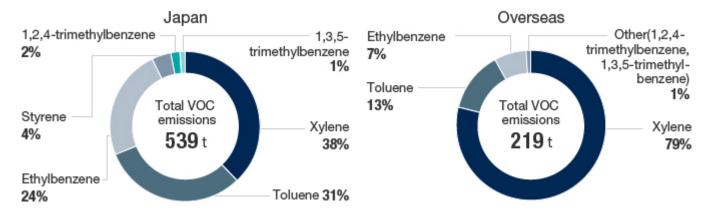
VOC Emissions

In FY2015, volatile organic compound (VOC) emissions were 758 tons, an increase of 17.4% compared to the previous fiscal year. We made efforts to reduce VOCs such as improving painting effectiveness and switching to VOC-free materials. However, VOC emissions increased owing to increasing production at Japan cast iron production sites and overseas production sites.

Additionally, the VOC emissions per unit of sales increased 11.6%.

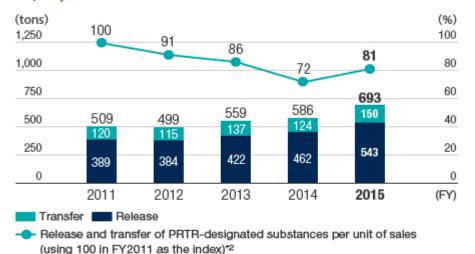


Trends in VOC Emissions^{*1} and Emissions per Unit of Sales


*1 VOCs comprise the six VOCs that are most prevalent in emissions from the KUBOTA Group: xylene, toluene, ethylbenzene, styrene, 1, 2, 4-trimethylbenzene, and 1, 3, 5-trimethylbenzene.

*2 VOC emissions per unit of consolidated net sales

VOC Emissions by Region (FY2015 results)



VOC Emissions by Substance (FY2015 results)

Release and Transfer of PRTR-designated Substances

In FY2015, a total of 693 tons of substances stipulated in the PRTR Law* was released and transferred, an increase of 18.2% compared to the previous fiscal year. Additionally, the release and transfer per unit of sales increased 12.4% compared to the previous fiscal year.

Trend in Release and Transfer of PRTR-designated Substances^{*1}, and Release and Transfer per Unit of Sales (Japan)

*1 Total amount of declarable substances that are handled at each site (annual volume of 1 ton or more (0.5 ton for Specific Class I designations))

*2 Release and transfer of PRTR-designated substances per unit of consolidated net sales.

^{*} Act regarding the release amounts of specific chemical substances into the environment and promotion of improving the management thereof.

Voice Changing Pre-Painting Treatment to Reduce the Amount of PRTR-Designated Substances Handled

KUBOTA Utsunomiya Plant introduced initiatives to reduce the amount of PRTR-designated substances used in its production processes. In the pre-painting treatment process, in order to improve corrosive resistance and adhesiveness of paint among other characteristics, zinc phosphate—which contains many PRTRdesignated substances—had conventionally been used. However, beginning from May 2014, the plant introduced a process that uses zirconium oxide. While the introduction of this method means that intricate temperature control is now required, it led to a reduction in zinc compounds—PRTR -designated substances—in the amount of 1,786kg in the year 2014. Moreover, the plant has also succeeded in minimizing its sludge generation by 27 tons. The cost involved in processing these substances has also been reduced, and the quality and corrosive resistance have been improved.

The KUBOTA Utsunomiya Plant, along with the entire KUBOTA Group, will continue to introduce improvement initiatives with the belief that reducing negative environmental impact and cost are one and the same with quality improvement.

Yoshiyuki Kashiwagi (supervisor) Tetsuo Oki Akihiro Kurokawa Tokitake Suzuki Sadayuki Suzuki Osamu Kikegawa KUBOTA Utsunomiya Plant

Monitoring Groundwater

Results of groundwater measurements conducted on the premises of the business sites that used organic chlorine-based compounds in the past are as shown below.

Groundwater monitoring (FY2015)

Business site Substance		Measured groundwater value	Environmental standard		
Tsukuba Plant	Trichloroethylene	Non-detected (less than 0.0001mg/L)	Less than 0.03mg/L		
Utsunomiya Plant	Trichloroethylene	Non-detected (less than 0.001mg/L)	Less than 0.03mg/L		

Reduction of Chemical Substances Contained in Products

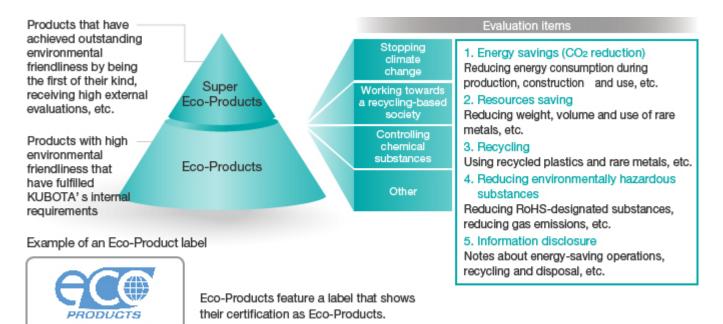
The KUBOTA Group has set rules for identifying and properly managing chemical substances in products in order to comply with REACH regulations* in Europe and other chemical substance regulations.

Since FY2011, chemical substances in products have been classified as one of the three following categories and managed appropriately. With cooperation from our suppliers, we investigate chemical substances in products on a global basis.

* REACH Regulations: EU Regulations for Registration, Evaluation, Authorization and Restriction of Chemical

Managing by Categorization into Three Levels

- 1. Substances to be Prohibited; Should not be contained in products
- 2. Substances to be Restricted; Should not be contained in products under certain conditions and applications
- 3. Substances to be Controlled; Presence in products should be recognized


Expanding Environment-friendly Products and Services

The KUBOTA Group is contributing to resolving global issues by expanding its environment-friendly products and services. We are working on initiatives that consider the entire value chain, from procurement of raw materials to product disposal.

Internal certification system for Eco-Products

Reduced fuel consumption by X% (vs. KUBOTA XX model, FYXXXX)

Based on the Eco-Products Certification System, an in-house certification of the environmental friendliness of products, the Group certified 43 Eco-Products in FY2015. We will continue to focus on reducing environmental impact throughout the life cycle of our products.

Products Certified as Eco-Products in FY2015 (excerpt)

Tractors M60 Series M9960, etc. (North America, Europe)

Compliant with exhaust gas regulations

Combine **WORI D** WR6100, etc.

Combine PRO Series PRO688Q-C, etc. (China)

Compliant with exhaust gas regulations

Riding Mower Front Mower F90 Series F3990 (North America)

Compliant with exhaust gas regulations

Rice Transplanter Racwel a Light ZP50L, etc.

Compliant with exhaust gas regulations Conserving resources

Heat pump airconditioner for home fertilizer Guppi Bazooka KBHP-GP224-T, etc.

Saving energy

Reducing environmentally hazardous substances

Compliant with exhaust gas regulations

Construction Equipment **Compact Excavator** KX155-5(China)

Compliant with exhaust gas regulations Saving energy

PVC-U drainage

pipes with function

Kanpeitatekan 100A

Saving energy

Conserving resources

Reducing environmentally

hazardous substances

of preventing fire

spread

Construction Equipment Wheel Loader R085(Europe)

Compliant with exhaust gas regulations Saving energy

Wastewater treatment apparatus Membrane Cartridge/ KUBOTA Submerged Membrane Unit™ H7-510 Type / ES/EK Series, etc.

Conserving resources Reducing environmentally hazardous substances

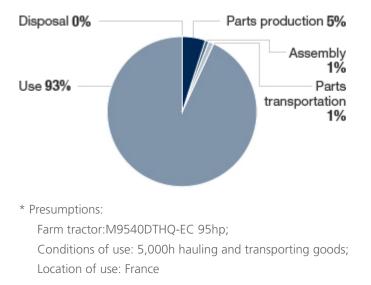
Grass cutter Electric grass cutter "Shizukaru" GC-E300

Saving energy Reducing environmentally

hazardous substances

Cracking coil for Ethlene plant **AFTALLOY** KHR35AF

Conserving resources

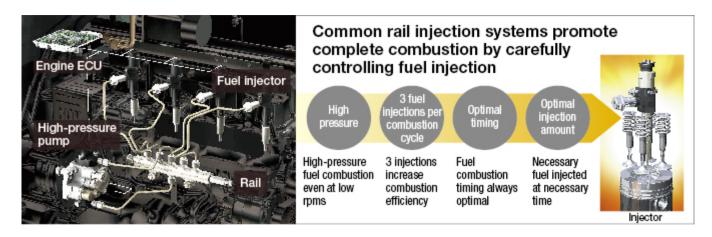

Environmental Considerations in the Product Life Cycle

• Analyzing Environmental Impact Throughout the Life Cycle

In FY2015, we requested the Japan Environmental Management Association for Industry to conduct a third-party review of the life cycle assessment (LCA) system we utilize for our main products—farm tractors and ductile cast iron pipes—with the aim of assessing greenhouse gas (GHG) emissions throughout the life cycle of each product.

The percentage of GHG emissions in the life cycle of a farm tractor is at its highest during actual use (90% or more). KUBOTA is aware that increasing the efficiency of tractors at the stage of actual use is important to reducing the environmental impact.

Results of Farm Tractor LCA (GHG emission percentages by stage)*


Reducing Environmental Impact during Product Use

The KUBOTA Group recommends appropriate maintenance and working methods in order to save energy when utilizing agricultural machinery. We are also contributing to reducing CO₂ emissions through efforts such as developing agricultural machinery capable of simultaneously conducting multiple tasks and reducing fuel consumption per harvested volume by making agricultural tasks more efficient.

Contributing through Higher Performance of Diesel Engines

Fuel injection can be carefully controlled in engines equipped with fully electronic-controlled common rail injection systems. Therefore, high combustion efficiency is possible, and high output, low noise and low fuel consumption are achieved.

Furthermore, the system contributes to making exhaust gas cleaner by minimizing particulate matter (PM) caused by incomplete combustion.

Contributing through Multi-Functional Agricultural Machinery

The KUBOTA RACWEL α rice transplanter is capable of simultaneously performing five tasks. We are contributing to the reduction of CO₂ emissions by making agricultural machinery multi-functional, thereby improving their efficiency and reducing fuel consumption.

Utilizing ICT to Achieve Eco-conscious Farm Management

The KUBOTA Smart Agri System (KSAS) utilizes information communications technologies (ICT) to not only achieve safe and secure crop production by increasing crop yield and quality by visualizing farm management, but also realizes eco-conscious farm management by optimizing fertilizer dispersion and extending the service life of farm machinery by improving serviceability.

Contributing to the Environment by Visualizing Farm Work

Harvest data collected by KSAS is useful for the soil preparation and fertilization plans of each field. This makes it possible to realize lean farm work and contribute to preventing soil and water pollution by optimizing fertilizer use.

The data obtained and results of issues analyzed can be used to plan soil preparation and fertilization by field for the following year.

Extending Service Life by Improving Maintainability

Improving Maintainability Based on Farm Machinery Information

KSAS automatically collects information on the operation of compatible machinery and prepares farm machinery information for each customer based on their machinery. This service is updated each morning and offered to customers.

By offering self-maintenance information, unforeseen trouble can be minimized, which helps to extend the service life of machinery.

450, 24	54	6452 24	63 D2 A1	NE INGINE END	•	_	8000-1	R VIII	
BALLED.	6.P							4	
8411		100		144				***	
	EA11210	O4HSQM n-C	04813	1504H3Q#F#-C			1 1	8683	
x39(89-28) 88-8828			-8 83.09						
48-25/84									
	ATA .	REGAR		-	el in		4400	AU2-75	
19.K-9.88		- The state of the	- Westerner	All and the second					
1555#									
HB ERCH			10.017.000	CARPORE CONTR	81 38			08.45	
*	275461		28			500	500	4.16-2 18	
*	11979		28					ATR 118	
2月1日					-		-		
NB ZNOT		80		Canasan dilili	80 I 89	21.1	194	UPPE	
*	21595716		18			. 80	308	新教会報	
×	8+5+5(\$+6)	24.6.0	2.8		(4)		308	£14-12-18	
×	#\$T# 667 66		IX.				300	100.00	
*	BERGS.		2.8		. 8	30	300	-	
*	BE#44244		28				608	#34-II II	
× .	RENAR		2.4			100	506	A14-21	
	00-10 (885-1	181	18			100	808		

Example farm machinery information offered to customers

Example of Improving Maintainability of Farm Machinery

KUBOTA offers a combine harvester equipped with its original DYNAMAX FULL OPEN, a mechanism that enables each of the combine's components to open and close dynamically.

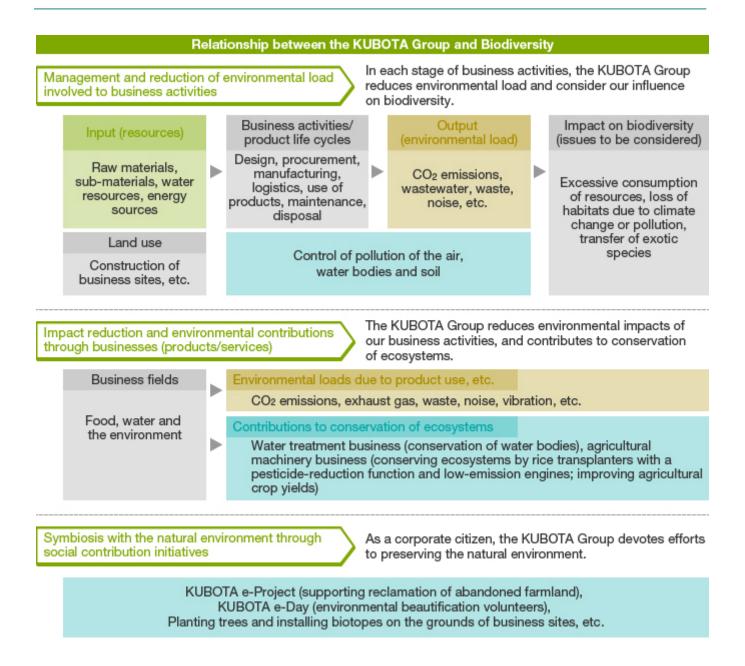
By making it possible to complete maintenance work quickly, whether it is daily cleaning and upkeep or the unlikely occurrence of a problem during a field operation, safe and secure work is possible and the life of the combine harvester is extended.

Condition before being fully opened

Voice Wishing to Contribute to Eco-conscious Farming through Customers' Broad Use of KSAS

Development verification tests were conducted for KSAS from 2011 to 2014 in Niigata Prefecture (Japan). From 2014, monitoring activities were carried out in various regions throughout Japan, and we exerted efforts to improve the accuracy of the system. The service officially started in 2014, and has since been highly regarded by government bodies, agricultural organizations and large-scale farm operators.

Through the accumulation and analysis of crop and work information, it is possible to produce high-yielding, good-tasting crops, improve work efficiency and reduce costs. Additionally, through the appropriate management of cultivation history, it is possible to achieve safe and secure crop-growing, which leads to environment-friendly, sustainable farming. KUBOTA wishes to continue contributing to eco-conscious farming by having its customers utilize KSAS widely for their operations.



Hirotaka Choami Manager (KSAS Group) Tractor and Utility Machinery Planning and Sales Promotion Dept. KUBOTA Corporation

Conservation of Biodiversity

Conservation of biodiversity is set as one of the targets for the KUBOTA Group's "Eco-First Commitment." In our business activities and social contribution initiatives, the Group is endeavoring to ensure that care is taken to conserve biodiversity and protect the natural environment.

Relationship between the KUBOTA Group and Biodiversity

Action Report

Practice Report

Amata Nakorn Plant of SIAM KUBOTA Corporation Co., Ltd. Participates in Volunteer Planting of White Mangroves

The Amata Nakorn Plant of SIAM KUBOTA Corporation Co., Ltd. has defined an independent policy regarding the social responsibilities of its employees. In accordance with this policy, many members participate in social contribution activities as volunteers.

In 2014, as a part of the plant's environmental conservation activities, all employees—approximately 1,400—participated in a white mangrove tree-planting event the Royal Thai Army Natural Study Centre. Through participating in this event three times by 2016, the goal is to plant a total of 100,000 mangroves and expand the forest.

Tree-planting activities

Practice Report P.T. Kubota Indonesia Participates in Organic Rice Plantation Project

Beginning from 2014, P.T. Kubota Indonesia has continued to participate in a project to develop organic paddy fields for rice in central Java. This project started as part of the Corporate Responsibility Program operated by the Bank Indonesia and other government organizations. The aim is to work together with research institutions and local residents to grow rice paddies that have minimal impact on biological systems by not using chemical fertilizers or pesticides. P.T. Kubota Indonesia contributes by donating hand tractors and threshers that help to increase productivity, and provides lectures on how to use and maintain the products.

In 2015, P.T. Kubota Indonesia plans to invite farmers to its plant and conduct training on diesel engines.

Stakeholders from Bank Indonesia, etc.

The KUBOTA Group has established an environmental management system for each site and enhances risk management activities based on a specific set of group rules. In recent years, we have been strengthening environmental management initiatives at our overseas sites.

Compliance with Environmental Laws and Regulations $\stackrel{ ho}{\sim}$

To ensure compliance with environmental laws, the KUBOTA Group has set and thoroughly manages its own control values at each of its sites for exhaust gas, wastewater, noise, vibration and other variables that are stricter than the relevant laws and regulations.

In the case of non-compliance or claims regarding environmental laws and regulations, the KUBOTA Group has a system established to report promptly to head office. Of the reports made in FY2015, two were non-compliance cases which were subjected to instruction and caution from the related government agency. These were the wastewater of a production site in Japan exceeding the pH control value and a Chinese group company with an excessive odor concentration value. For either case, we have taken the appropriate measures and are making improvements to prevent reoccurrence.

Environmental Auditing / Environmental Risk Assessment

Environmental Auditing

Each year environmental audits are conducted by the KUBOTA Environmental Protection Department based on the internal control system of the KUBOTA Group. Audits in FY2015 were conducted by means of paper audits and field audits targeting production sites, service sites, offices, construction and maintenance management departments in Japan and overseas production sites.

Furthermore, in addition to environmental audits conducted by the Environmental Protection Department, at production sites, internal environmental audits were implemented by staff members at each site with the aim of raising the level of environmental management.

Audit of overseas production site Kubota Construction Machinery (WUXI) Co,. Ltd.

FY2015 Environmental audit implementation Status

- Number of subject sites and departments: 219
- Number of 32 (for construction audit items: departments) up to 90 (for production sites in Japan)
- Audit details: Water and air quality management, noise and vibration management, waste discharge and chemical substances management, climate change prevention, response to abnormalities and emergencies, and environmental management system

Environmental Risk Assessment

The KUBOTA Group has begun conducting environmental risk assessments at production sites to accurately evaluate the use of harmful substances and functions of environment-related equipment. The objective is to clarify the condition of the environmental risk and to implement systematic improvement.

In FY2015, the KUBOTA Environmental Protection Department conducted onsite assessments at each overseas production site, as well as self-assessments using a self-checksheet at production sites in Japan. By conducting the environmental audits and environmental risk assessments—which have different perspectives—in parallel, the Group is striving to increase its ability to accurately identify environmental risks and reduce risk even further.

Environmental risk assessment at an overseas production site, KUBOTA Precision Machinery (Thailand) Co., Ltd.

FY2015 Environmental Risk Assessment Implementation Status

- Number of 33 (26 production sites in Japan, sites and 7 overseas production sites) departments subjected:
- Number of 247 items (145 water quality, audit items: 102 air quality)
 - Assessment Water quality-related targets: equipment, air quality-related equipment

Drills for responding to abnormal and emergency situations

The KUBOTA Group is making efforts to identify and minimize the environmental risks associated with its business activities.

It carries out regular training based on the procedures established to respond to specific risks at each site in order to mitigate the impact on the ambient environment in case of an environmental accident.

Flow prevention drill simulating the leakage of oil containing PCBs.

Flow prevention drill simulating the leakage of oil. Nihon Plastic Co., Ltd. (Headquarters factory)

KUBOTA Okajima Business Center.

Green Procurement

For the purpose of providing products that are friendly to the global and local environment, the KUBOTA Group is seeking to procure products with reduced environmental impacts from eco-friendly suppliers.

In order to effectively promote eco-friendly sourcing activities, the Group presents its policy for green procurement in the KUBOTA Group's Green Procurement Guidelines, to request the understanding and cooperation of suppliers.

KUBOTA Group's Green Procurement Guidelines and Appendix (Publishing in Japanese, English and Chinese.)

For details on KUBOTA Group's Green Procurement Guidelines, click here.

Environmental Education and Enlightenment

• Results of environmental education in FY2015

The KUBOTA Group provides environmental training and education to our employees around the world. The education program for employees consists of rank-based training, professional training, and general training. KUBOTA assists external group's environmental education programs.

Classification	Course title	Frequency	No. of participants	Course descriptions
	Kubota Introductory course (new employees, etc.)	2	172	Global and local environmental issues and KUBOTA's environmental conservation activities
	CSR training (for 9th year employees in staff position)	2	116	Environmental issues and environmental risk management
Education by employee-level	Training for employees promoted to managerial positions	anagerial 3 112 er	The KUBOTA Group's environmental management	
	Training for newly appointed 2 supervisors	65	KUBOTA's environmental management and efforts as supervisors	
	Training for newly appointed foremen	1	27	KUBOTA's environmental management and efforts as foremen
	Environmental forum for executive officers	1	200	Lecture by landscaper Masayuki Wakui
	Basics of environmental management	1	20	Basic knowledge of legal systems, environmental risk, and environmental conservation
Professional education	Environment-related facilities management	1	22	Pollution control technologies and pollution control laws
	Energy-saving management	1	12	Energy-saving technologies, energy- saving laws

Classification	Course title	Frequency	No. of participants	Course descriptions
	Waste management	2	26	Waste Management and Public Cleansing Law, practical training in consignment contracts and manifests, etc.
Professional education	Education to train ISO 14001 environmental auditors	3	46	The ISO 14001 standard, environment-related laws, audit techniques
	New waste management system training	24	283	Training on electronic information management systems
General training	Business sites in Japan Environmental education	15	333	The KUBOTA Group's environmental management and medium-term environmental conservation targets
	Overseas production sites Environmental management technologies education	1	23	Pollution control technologies
	total	59	1457	

Classification	Course title	Frequency	No. of participants	Course descriptions
Supporting to education in	Internship program with Utsunomiya Hakuyo High School	1	3	KUBOTA environmental conservation activities and efforts at Utsunomiya Plant
outside organizations	Environmental training for local governments, companies and organizations	4	56	Hanshin Plant's environmental initiatives and Environment Dojo tours

Education on environmental management technologies (Environment staffs of each Chinese site)

Environmental forum for executive officers (Lecturer: Mr. Masayuki Wakui)

Environment Month Report

Developing activities based on the theme, "Effective Utilization of Water"

KUBOTA Group has declared June every year as "Environment Month," and carries out enlightenment activities accordingly. In FY2015, "Effective Utilization of Water" was chosen as the theme as water is intrinsic to our business.

As part of the activities, a poster was produced to raise awareness of Environment Month and displayed on the notice boards at all Group sites. For the poster design, we chose a painting by Yuki Sasaki, the winner of the 2013 International Children's Painting Competition on the Environment in the Japanese elementary school upper grades category.

Noticeboard at Kubota Engine (Thailand) Co., Ltd.

Environment Month poster

[Artist's comments]

The planet is said to have around 1.4 billion cubic kilometers of water. Apparently around 97% of this is sea water and only the remaining 3% or so is fresh water. We can only use 0.8% of that for our daily water. Many people around the world are facing water shortage problems. I drew this illustration thinking how important it was that the people of the world help each other and take good care of our precious, limited water supply. I was really surprised that my illustration was used for Environment Month. I hope for the creation of a society in which the people of the world don't need to struggle for water.

Yuki Sasaki First grade, Fukaya Junior High School, Fukaya City, Saitama Prefecture, Japan

Receiving Environmental Awards

• Award for Disclosure of Environmental Information

At the 18th Environmental Communication Awards hosted by the Global Environmental Forum of Japan's Ministry of the Environment, the online version of KUBOTA Group's CSR report—KUBOTA REPORT 2014—received the Special Award for Reliable Reporting in the Environmental Reporting Category. It was presented by the chairman of the Japanese Association of Assurance Organizations for Sustainability Information.

The Environmental Communication Awards is an awards system that commends outstanding environmental reporting, etc. in an effort to promote environmental management and environmental communication by companies, as well as improve the quality of information disclosure. The Special Award for Reliable Reporting is awarded for not only producing an outstanding environmental report, but for also subjecting reports to third-party assurance as a measure to further improve the reliability and transparency of information disclosure regarding environmental efforts. The KUBOTA Group received recognition for providing factual information in full and disclosing information with sincerity. We will continue our sincere efforts to disclose reliable and comprehensive information.

Special Award for Reliable Reporting Certificate of Commendation

• Receiving Environmental Awards

P.T. Kubota Indonesia Receives the BLUE PROPER Award

P.T. Kubota Indonesia (PTKI) has received its second Blue PROPER Award from the Indonesian Ministry of Environment in recognition of its corporate activities over the year beginning July 2013. The Environmental Performance Rating Program (PROPER) is operated by the Indonesian Ministry of Environment and commends companies that have produced excellent results in regards to environmental conservation activities.

This award is given to companies who comply with environmental regulations and operate appropriate environmental management systems. Moving forward, PTKI will continue to strengthen its initiatives in the area of environmental management.

BLUE PROPER Award Certificate of Commendation

SIAM KUBOTA Corporation Co., Ltd (Amata Nakorn Plant) Receives The Prime Minister's Award for Environmental Conservation

In 2014, the Amata Nakorn Plant of SIAM KUBOTA Corporation Co., Ltd. (SKCA) received the Environmental Quality Conservation Award of the Thailand Prime Minister's Industry Award. This award is given to companies that not only serve as role models for the development and moral improvement of industry in Thailand, but also promote environmental conservation activities aimed at sustainable economic growth. SKCA received recognition for its well-organized environmental management system, which includes initiatives such as working to reduce environmental burden and providing environmental training to employees.

SKCA also received the highest award at the IEAT Waste Management Awards event relating to industrial waste management and hosted by the Industrial Estate Authority of Thailand (IEAT), and the Thailand Energy Award 2014 from the Ministry of Industry, Thailand, which relates to energy management.

Staff at Amata Nakorn Plant

Environment Communication Report

Practice Report

SIAM KUBOTA Metal Technology Co., Ltd. Provides Environmental Education for Elementary School Students

SIAM KUBOTA Metal Technology Co., Ltd.(SKMT) provides environmental education for local elementary children as part of its environmentorientated social contribution activities. Employees have lunch with the children while casually discussing things about the natural environment, and sow the seeds of environmental conservation awareness through quizzes and games.

SKMT is grateful for the privilege of being able to share precious resources such as air and water with local residents, and will continue to proactively engage in activities that contribute to society.

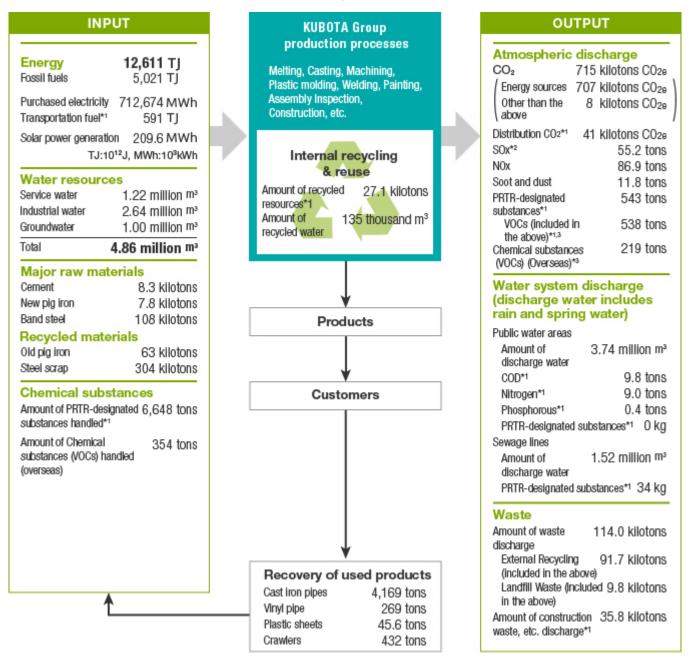
Environmental education session

Practice Report Environmental Communication with Elementary and Junior High School Students at KUBOTA Hanshin Plant (Mukogawa)

As part of the Next-generation Development Project of Amagasaki City, the KUBOTA Hanshin Plant in Mukogawa has been offering plant tours to local elementary and junior high school students every year since FY2012. In FY2015, approximately 150 students took part in the tour.

First, KUBOTA employees explain the manufacturing processes for water pipes and other products, and then take the students to the actual manufacturing lines. Afterwards, the children receive an explanation of the plant's environmental conservation activities at the Environment Dojo in hope of helping them to understand the importance of resources such as water and heighten their awareness of environmental conservation. During the tour, children are also introduced to wastewater treatment and waste recycling processes in straightforward ways such as models and quizzes. Children also observe the electricity consumption of LED lights and witness firsthand how effective LED is for reducing CO₂.

The KUBOTA Hanshin Plant will continue striving to impress customers and the local community by being an accommodating and informative plant.



Elementary school students receiving an explanation at the Environment Dojo

Overview of the KUBOTA Group's Environmental Load

This is an overall summary of the KUBOTA Group's environmental load from its diverse business activities in Japan and overseas in FY2015. We will continue to assess and analyze environmental load and engage in initiatives to reduce it.

Overview of the KUBOTA Group's Environmental Load 🔎

- *1 Data concerning business sites in Japan .
- *2 From FY2015, the scope for SOx emissions calculation has changed. For the latest scope, please refer to "Trends in Major Environmental Indicators."
- *3 VOCs comprise the six VOCs that are most prevalent in emissions from the KUBOTA Group: xylene, toluene, ethylbenzene, styrene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene.

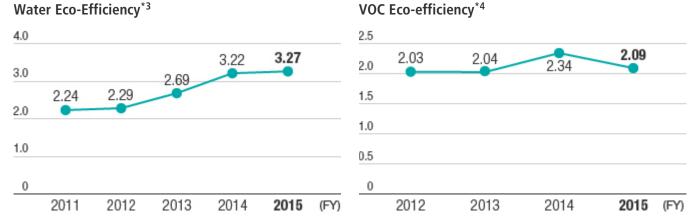
Trends in Major Environmental Indicators

Trends in Major Environmental Indicators in the Last Five Years Listed on "Overview of the KUBOTA Group's
Environmental Load" 🔎

		E	nvironmenta	l indicators	Unit	FY2011	FY2012	FY2013	FY2014	FY2015
		To	tal energy inp	but	TJ	9,235	9,646	11,320	12,150	12,611
			Fossil fuel		ΤJ	3,535	3,726	4,370	4,660	5,021
			Purchased e	lectricity	MWh	523,490	543,100	642,400	690,600	712,674
			Transportat	on fuel (Japan)	ΤJ	564	587	641	695	591
		Wá	ater consump	tion	Million m³	4.23	4.45	4.50	4.68	4.86
				Overseas included in the above	Million m ³	0.44	0.52	0.83	0.89	1.04
I	NPUT	Service wa		er	Million m ³	0.86	0.87	1.03	1.10	1.22
			Water for ir	dustrial use	Million m ³	2.36	2.56	2.46	2.56	2.64
			Groundwate	er	Million m ³	1.01	1.02	1.01	1.02	1.00
			nount of PRT pan)	R-designated substances handled	tons	5,277	5,321	5,667	5,839	6,648
			Amount of chemical substances (VOCs) handled (Overseas) ^{*1}		tons	-	-	329	354	354
		СС	02 emissions		kilotons CO ₂	451	471	585	663	715
OUTPUT	Atmospheric	scharge	Overseas included in the above	kilotons CO ₂	76	93	135	172	181	
UUIPUI	discharge		arge	Energy sour	ces	kilotons CO ₂	445	465	579	657
			Other than	the above	kilotons CO ₂	6	6	6	6	8

		Enviro	nmental indicators	Unit	FY2011	FY2012	FY2013	FY2014	FY2015		
		Distribut	ion CO ₂ (Japan)	kilotons CO ₂	39	40	44	48	41		
		SOx emi	ssions ^{*2,3}	tons	5.2	2.9	26.6	78.7	55.2		
		NOx em	issions	tons	66.1	61.7	64.3	79.6	86.9		
		Soot and	d dust emissions	tons	5.5	6.4	5.7	9.2	11.8		
	discharge	Amount (Japan)	of PRTR-designated substances released	tons	389	384	422	462	543		
			VOC (included in the above) ^{*1}	tons	389	384	419	460	539		
			Amount of chemical substances (VOCs) released Overseas) *1		-	119	175	186	219		
		Public	Wastewater discharge	Million m ³	3.78	3.82	3.48	3.82	3.74		
OUTPUT			COD ^{*4,5} (Japan)	tons	10.6	11.9	10.4	10.6	9.8		
		water	Nitrogen discharge ^{*4,5} (Japan)	tons	9.5	10.2	9.7	8.9	9.0		
	Water	em	areas	areas	Phosphorous discharge ^{*4,5} (Japan)	tons	0.35	0.29	0.30	0.32	0.37
	system discharge		Amount of PRTR-designated substances released (Japan)	kg	35	40	9.0	8.4	0		
			Wastewater discharge	Million m ³	0.94	1.01	1.34	1.23	1.52		
		lines	Trend in amount of PRTR-designated substances released (Japan)	kg	21	20	20	21	34		
		Amount of waste discharge		kilotons	70.0	78.2	89.7	98.2	114.0		
	Waste		Overseas included in the above	kilotons	10.2	14.5	25.4	32.6	38.0		
	VVdSte		Landfill waste	kilotons	4.3	4.1	7.2	13.1	9.8		
		Amount	of construction waste, etc. discharge(Japan)	kilotons	18.9	32.7	31.8	23.8	35.8		

*1 VOCs comprise the six VOCs that are most prevalent in emissions from the KUBOTA Group: xylene, toluene, ethylbenzene, styrene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene.


- *2 Previously, the sulfur contained in the slag and particulate matter was included in the calculation of SOx emissions emitted from the fuel combustion in casting plants. However, from FY2015, it has been excluded from calculations as it is not emitted into the atmosphere.
- *3 Previously, SOx deriving from fuel combustion was included in the calculation of SOx emissions. However, in FY2015, it was discovered that, at a part of our overseas subsidiaries (SIAM KUBOTA Metal Technology Co., Ltd. and three other companies), SOx emissions were emitted from production processes other than fuel combustion. The SOx concentration regulation applies to the exhaust discharged from the concerned production processes of these overseas subsidiaries, and the SOx emission amount was significant so it has been included in the SOx emissions calculation. In accordance with these changes, the SOx emissions amount has been revised for the past fiscal year.
- *4 Data for total discharge from business sites subject to total emission control.
- *5 Data in FY2014 was revised to improve accuracy.

Eco-efficiency $^{ ho}$

Eco-efficiency of the environmental load for water consumption improved in comparison with last fiscal year. Meanwhile, the eco-efficiency for CO₂, waste and VOC worsened. The improvement in figures means that the sales per unit of environmental load have increased, which is considered to indicate higher eco-efficiency.

CO₂ Eco-efficiency^{*1}

*1 CO₂ Eco-efficiency = Consolidated net sales (million yen)/ CO₂ emissions (tons CO₂e)

*2 Waste Eco-efficiency = Consolidated net sales (million yen)/ Waste discharge (tons)/10

*3 Water Eco-efficiency = Consolidated net sales(million yen)/water consumption $(m^3) \times 10$

*4 VOC Eco-efficiency = Consolidated net sales(million yen)/VOC emissions (kg)

Calculation Results of PRTR-Designated Substances

FY2015 Results of PRTR reporting (Japan)

Number			Releases	S		Tran	sfers
specified in Cabinet Order	Chemical substance	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off- site
1	Water-soluble zinc compounds	0.0	0.0	0.0	0.0	34	873
53	Ethylbenzene	132,403	0.0	0.0	0.0	0.0	24,898
71	Ferric chloride	0.0	0.0	0.0	0.0	0.0	0.0
80	Xylene	204,045	0.0	0.0	0.0	0.0	37,372
87	Chromium and chromium (III) compounds	0.0	0.0	0.0	0.0	0.0	3,383
132	Cobalt and its compounds	0.0	0.0	0.0	0.0	0.0	2.8
185	Dichloro-pentafluoro- propane	2,692	0.0	0.0	0.0	0.0	0.0
188	N,N-Dicyclohexylamine	0.0	0.0	0.0	0.0	0.0	1,105
239	Organic tin compounds	0.0	0.0	0.0	0.0	0.0	14
240	Styrene	20,399	0.0	0.0	0.0	0.0	0.0
243	Dioxins	0.017	0.0	0.0	0.0	0.0	0.52
277	Triethylamine	0.0	0.0	0.0	0.0	0.0	0.0
296	1, 2, 4-trimethylbenzene	11,311	0.0	0.0	0.0	0.0	2,389
297	1, 3, 5-trimethylbenzene	2,516	0.0	0.0	0.0	0.0	9.1
300	Toluene	168,010	0.0	0.0	0.0	0.0	21,947
302	Naphthalene	1,482	0.0	0.0	0.0	0.0	0.0
305	Lead compounds	10	0.0	0.0	0.0	0.0	11,112

Number	Releases Trar		Tran	sfers			
specified in Cabinet Order	Chemical substance	Atmosphere	Public water areas	Soil	On-site landfills	Sewerage	Transfers to off- site
308	Nickel	0.68	0.0	0.0	0.0	0.0	441
349	Phenol	0.0	0.0	0.0	0.0	0.0	0.0
354	Di-n-butyl phthalate	52	0.0	0.0	0.0	0.0	149
392	n-Hexane	0.0	0.0	0.0	0.0	0.0	0.0
400	Benzene	2.5	0.0	0.0	0.0	0.0	0.0
405	Boron compounds	0.0	0.0	0.0	0.0	0.0	1,927
412	Manganese and its compounds	0.0	0.0	0.0	0.0	0.0	44,253
448	Methylenebis (4, 1-phenylene) diisocyanate	0.0	0.0	0.0	0.0	0.0	0.0
453	Molybdenum and its compounds	0.0	0.0	0.0	0.0	0.0	0.0
	Total	542,923	0.0	0.0	0.0	34	149,876

* Total of substances with annual handling volume of one ton or more (0.5 ton or more for Specific Class I Designations) at each business site.

* Unit: kg/year (Dioxins: mg-TEQ/year)

Volatile Organic Compounds (VOCs)

Six VOC substances targeted for reduction in FY2016 Medium-Term Environmental Conservation Targets

Environmental Accounting

The KUBOTA Group performs environmental accounting and publicizes data about the cost of investments in environmental conservation and the economic and environmental benefits of these investments.

Environmental conservation costs

(Yen in millions)

		FY20)14	FY2015		
Classifications	Main activities	Investment	Expenses	Investment	Expenses	
Within the business area cost		679	1,353	1,476	1,657	
Local environmental conservation cost	Prevention of air and water pollution, soil contamination, noise, vibration, etc.	377	341	563	433	
Global environmental conservation cost	Prevention of climate change	301	233	888	326	
Resource recycling cost	Minimizing waste production, reducing quantity of waste, and recycling	0.5	779	25	898	
Upstream and downstream costs	Collection of used products and commercialization of recycled products	0	30	0	25	
Management activities cost	Environmental management personnel, ISO maintenance and implementation, environmental information dissemination	2	1,326	14	1,581	
R&D cost	R&D for reducing of product environmental load and developing environment conservation equipment	288	6,394	282	6,598	
Social activities cost	Local cleanup activities and membership fees and contributions to environmental groups, etc.	0	1	0	1	

Classifications	Main activities	FY2C)14	FY2015		
Classifications		Investment	Expenses	Investment	Expenses	
Environmental remediation cost	Contributions and impositions, etc.	0	199	0	88	
Total		969	9,303	1,772	9,950	
Total capital investment (i data)	Total capital investment (including land) for the corresponding period (consolidated data)					
Total R&D costs for the co	prresponding period				39,500	

Environmental conservation effects

Effects	Items	FY2014	FY2015
Environmental effect related to resources input into business activities	Energy consumption (Except for transportation fuel) [units of heat; in terajoules (TJ)]	7,870	8,274
Environmental effect related to resources input into business activities heat; in terajoules (TJ)] Water consumption (million m CO2 emissions (Energy related (kilotons CO2) SOx emissions (tons) NOx emissions (tons)	Water consumption (million m ³)	379	382
	CO2 emissions (Energy related) (kilotons CO2)	485	526
	SOx emissions (tons)	16.2	19.8
Environmental effect related to waste	NOx emissions (tons)	64.7	70.0
or environmental impact originating	Soot and dust emissions (tons)	3.4	3.5
from business activities	Releases and transfers of PRTR- designated substances (tons)	586	693
	Waste discharge (kilotons)	65.6	76.0
	Waste to landfills (kilotons)	1.2	2.5

Economic effects

(Yen in millions)

Classifications	Details	Annual effects
Energy conservation measures	Use alternative fuels for production facilities and switch to more efficient lighting and air handling systems	234
Zero-emissions	Reduce the amount of industrial waste; promote resource recycling; other	47
measures	Sales of valuable resources	1,018
Total		1,299

<Environmental accounting principles>

1) The period covered spans from April 1, 2014 to March 31, 2015.

- 2) The data of business sites in Japan are considered in the calculation.
- 3) Data was calculated referring to the Environmental Accounting Guidelines 2005, published by Japan's Ministry of the Environment.
- 4) "Expenses" includes depreciation costs.

Depreciation cost was calculated based on the standards applied to KUBOTA's financial accounting, and assets acquired in and after 1998 were considered in the calculation. "Management activities" and "R&D costs" include personnel expenses. "Resource recycling costs" does not include costs incurred during disposal of construction waste at construction sites. "R&D costs" represents that which was spent on environmental purposes, calculated on a pro-rata basis.

5) "Economic effects" is obtained only by adding up tangible results and does not include estimated effects.

Status of Environmental Management System Certification Acquisition

The KUBOTA Group's production sites in Japan aquired ISO 14001 certification by the end of FY2007. We are currently developing activities to promote certification of ISO 14001 and other qualifications at overseas production sites. In FY2015, certification was obtained by two of our production sites in China and one in Thailand.

ISO 14001 Certification

KUBOTA in Japan

No	Name	Other Included Organizations and Subsidiaries			Date of Certification
1	Tsukuba Plant	 Eastern Main Parts Center KUBOTA F.I.M. Service Ltd. KS Tsukuba Training Center Kanto Kubota Precision Machinery Co.,Ltd. 	Engines, tractors, etc.	LRQA	November 28, 1997
2	Keiyo Plant	Distribution Center	enter Ductile iron pipe, spiral welded steel pipe		July 16, 1998
3	Ryugasaki Plant	 KUBOTA Vending Service Co., Ltd Ryugasaki Plant KUBOTA Kanto Vender Center Inc. Ryugasaki Plant 	Vending machines	DNV	November 13, 1998
4	Hanshin Plant	• Marushima Factory	Ductile iron pipe, rolls, potassium titanate, KUBOTA TXAX products	LRQA	March 5, 1999
5	Kyuhoji Business Center	 KUBOTA Environmental Service Co., Ltd KUBOTA Membrane Corp. KUBOTA Keiso Corp. 	Measuring instruments, measuring systems, rice- milling products, waste shredder systems, submerged membranes, and mold temperature controllers	DNV	March 19, 1999

No	Name	Other Included Organizations and Subsidiaries	Drganizations and Main Business		Date of Certification
6	Hirakata Plant		Valves, cast steel, new ceramic materials, and construction machinery	LRQA	September 17, 1999
7	Okajima Business Center		Industrial cast iron products, drainage pipes, and other cast iron products	JICQA	December 22, 1999
8	Sakai Plant/Sakai Rinkai Plant		Engines, tractors, small- size construction machinery, etc.	LRQA	March 10, 2000
9	Shiga Plant		FRP products	JUSE	May 18, 2000
10	Water Engineering & Solution Business Unit	 Shin-yodogawa Environmental Plant Center 	Sewage and sludge water purification, wastewater treatment facilities	LRQA	July 14, 2000
11	Pumps Business Unit	• KUBOTA Kiko Ltd.	Sewage and water purification plants, pumps and pump stations	LRQA	July 14, 2000
12	Water Engineering & Solution Business Unit (membrane filtration system)		Filtration membrane unit	LRQA	July 14, 2000
13	Utsunomiya Plant	• KUBOTA F.I.M. Service Ltd. KS Utsunomiya Training Center	Rice transplanters and combine harvesters	LRQA	December 8, 2000

KUBOTA Group: Companies in Japan

No	Name	Other Included Organizations and Subsidiaries	Main Business	Inspecting/ Certifying Organization	Date of Certification
1	Nippon Plastic Industry Co., Ltd.	 Head office and plant, Mino Plant 	Plastic pipes, plastic sheets, etc.	JSA	October 27, 2000
2	KUBOTA Construction Co., Ltd.		Design and construction of civil engineering structures and buildings	JQA	December 22, 2000
3	KUBOTA Environmental Service Co., Ltd.		Installation, maintenance and management of environmental systems for service water, sewage, landfill disposal, raw waste and waste plants, etc.	MSA	November 20, 2002
4	KUBOTA-C.I. Co., Ltd.	 Tochigi Plant Sakai Plant Odawara Plant Kyushu KUBOTA Chemical Co., Ltd. 	Plastic pipes and couplings	JUSE	March 27, 2003 (integrated authentication in 2011)
5	KUBOTA Air Conditioner Co., Ltd.	• Tochigi Plant	Central air conditioning systems	JQA	August 27, 2004
6	KUBOTA Precision Machinery Co., Ltd.		Hydraulic valves, hydraulic cylinders, transmissions, hydraulic pumps, hydraulic motors, etc.	LRQA	March 17, 2007
7	KUBOTA KASUI Corporation		Design, construction and maintenance management of environmental conservation facilities	BCJ	February 1, 2010

KUBOTA Group: Overseas companies

No	Name	Main Business		Inspecting/ Certifying Organization	Date of Certification	
1	SIAM KUBOTA Corporation Co., Ltd. (Thailand)		sel engines ral machine		MASCI	February 28, 2003
2	P.T. Kubota Indonesia (Indonesia)	Diesel en machiner		agricultural	LRQA	February 10, 2006
3	Kubota Materials Canada Corporation (Canada)	Cast stee	l products,	TXAX	SGS (U.S.)	June 15, 2006
4	P.T.Metec Semarang (Indonesia)	Vending	machines		TUV	March 16, 2011
5	Kubota Precision Machinery (Thailand) Co., Ltd. (Thailand)	Equipme	nt for tracto	ors	LRQA	August 5, 2015
6	Kubota Manufacturing of America Corporation (U.S.)	Small-sized tractors, mowers, utility vehicles and tractor accessories		BSI	September 20, 2012	
7	SIAM KUBOTA Corporation Co., Ltd. (Amata Nakorn, Thailand)	Tractors and combine harvesters		BV	September 27, 2012	
8	Kubota Industrial Equipment Corporation (U.S.)	Tractor implements and tractors		DEKRA	November 28, 2012	
9	KUBOTA SANLIAN PUMP (ANHUI) Co., Ltd. (China)	Pumps		CCSCC	May 29, 2013	
10	Kubota Agricultural Machinery (SUZHOU) Co., Ltd. (China)		harvesters ters and tra		SGS	November 13, 2013
11	Kubota Construction Machinery (WUXI) Co.,Ltd	Construc	tion machii	nery	CQC	December 11, 2014
12	SIAM KUBOTA Metal Technology Co., Ltd. (Thailand)	Cast iron and tract	products f ors	or engines	BV	December 19, 2014
13	Kubota Engine (WUXI) Co ., Ltd (China)	Diesel engines		SGS	March 22, 2015	
LRQA: DNV: JICQA: JUSE: JSA: JQA: MSA: JCQA: BCJ:	Lloyd's Register Quality Assurance Limit DNV Certification B.V. (Netherlands) JIC Quality Assurance Ltd. (Japan) Union of Japanese Scientists and Engin Center Japanese Standards Association Japan Quality Assurance Organization Management System Assessment Cent Japan Chemical Quality Assurance Ltd. The Building Center of Japan	eers ISO eer (Japan)	MASCI: SGS (U.S.): TÜV: SGS: BSI: BV: DEKRA: CCSCC:	(Thailand) Systems & Sen North America TÜV Rheinland SGS United Ki BSI Assurance Bureau Veritas Branch (U.K.) DEKRA Certifi	System Certification, inc. (U.S.) Cert GmbH (Gerr ngdom Limited (U. UK Limited (U.K.) Certification Holo cation, Inc. (U.S.)	a Division of SGS nany) K.) ling SAS—UK

161

Company (China)

• EMAS Certification

KUBOTA Group: Overseas companies

No	Name	Main Business	Inspecting/ Certifying Organization	Date of Certification
1	Kubota Baumaschinen GmbH (Germany)	Construction machinery	IHK	January 3, 2013

IHK: Industrie- und Handelskammer fÜr die Pfalz (Germany)

Calculation Standards of Environmental Performance Indicators

Period: April 2014 to March 2015 (overseas data: January 2014 to December 2014)

* From FY2014, the accounting policy of the KUBOTA Group has changed to reflect the preliminary results of some of its consolidated subsidiaries whose fiscal years end at different times in its consolidated financial statements. The period covered in the Environmental Report is as stated above.

Organizations covered:

KUBOTA Corporation and 53 consolidated subsidiaries in Japan and 103 overseas consolidated subsidiaries (100% coverage), In addition, 12 affiliated companies accounted for under the equity method covered by the scope of the KUBOTA Group's environmental management are included from FY2015.

(Total of 156 consolidated subsidiaries and 12 affiliated companies accounted for under the equity method) .

Calculation Standards of Environmental Performance Indicators

	Environmental performance indicators		Calculation method	
Energy and CO2- related	Total energy input (TJ: 10 ¹² J)	TJ	 [Calculation formula] Amount of purchased electricity heat value + Σ [amount of each consumed x per-unit heat value fuel] Per-unit heat value is determined accordance with the Enforcemer Regulation for the Act on the Ra of Energy, Japan 	fuel of each d in nt
			 [Calculation scope] Purchased electricity and fossil fue business sites Transportation fuel used in distri (Japan) 	
	Energy consumption (PJ: 10 ¹⁵ J)	PJ	 [Calculation formula] Amount of purchased electricity heat value + Σ [amount of each is consumed x per-unit heat value of fuel] Per-unit heat value is determined accordance with the Enforcemer Regulation for the Act on the Ra of Energy, Japan 	fuel of each d in nt

			[Calculation scope]	• Purchased electricity and fossil fuel used at business sites
Energy and CO2- related	CO2 emissions	kilotons- CO2e	[Calculation formula]	 Amount of purchased electricity x CO2 emission coefficient + Σ [amount of each fuel consumed at business sites x per-unit heat value of each fuel x CO2 emission coefficient of each fuel] + non-energy source greenhouse gas emissions Non-energy source greenhouse gas emissions = CO2 emissions from non- energy sources + non-CO2 greenhouse gas emissions The method for calculating non-energy source greenhouse gas emissions is based on the Manual for Calculation and Report of Greenhouse Gas Emissions (latest version every fiscal year; Japan's Ministry
				of the Environment and Ministry of Economy, Trade and Industry) [CO ² emission coefficients]
				FY1991 Based on the Report on Survey of Carbon Dioxide Emissions (Japan's Environment Agency 1992) and the Guideline for Measures to prevent Global Warming (Japan's Environment Agency 1993) From FY2011 to FY2015
				Fuel: Based on the Manual for Calculation and Report of Greenhouse Gas Emissions (latest version every fiscal year; Japan's Ministry of the Environment and Ministry of Economy, Trade and Industry) Electricity: Data for Japan are effective
				emission coefficients published by electricity utilities (before reflecting carbon credits) Overseas data are emission coefficients of respective countries published in the
			164	Greenhouse Gas Protocol Initiative (Ver.

			[Calculation scope]	 4.5) Effect of CO² emission coefficients for electricity: The difference between the emitted amount of CO² calculated using the FY2012 CO² emission coefficients for electricity in Japan, which are based on the amounts reported by electricity utilities in FY2011, and the emitted amount of CO² calculated using the same CO² emission coefficients for each year Non-energy source greenhouse gas data for FY2011 are for business sites in Japan only Data are for HFC, PFC and SF6 emissions from January to December included in non-energy source greenhouse gases
Energy and CO2- related	Freight traffic	ton-km	[Calculation formula] [Calculation scope]	 Σ [Freight transportation amount (tons) x distance traveled (km)] Transportation in Japan (products and industrial waste discharge)
	Fuel consumption during transportation	TJ	[Calculation formula]	 Σ [Freight traffic by truck x Fuel consumption per ton-kilometer x per-unit heat value]+Σ [Freight traffic by rail and water X energy use (heat value) per unit ton-kilometer] Calculation method is from the Manual to Support Merchants regarding Revisions to Energy Conservation Laws , 3rd Edition (April 2006, Japan's Energy Conservation Center of the Agency of Natural Resources and Energy, Japanese Ministry of Economy, Trade and Industry)
			scope]	 Transportation in Japan (products and industrial waste discharge)
	CO2 emissions	kilotons-	[Calculation 165	

	during distribution	CO2e	[Calculation scope] •	by truck X CO by fuel of tran consumption f and water X C kilometer by m Calculation met for Calculation gas Emission (Ministry of the of Economy, T	mption for freight shipment 2 emission per ton-kilometer sportation]+Σ[Fuel for freight shipment by rail CO2 emission per ton- neans of transportation] ethod is based on the ton- hod stipulated in the Manual n and Report of Greenhouse Ver.4.0) (May 2015, Japan's e Environment and Ministry trade and Industry) n in Japan (products and te discharge)
Energy and CO2- related	Scope 3 emissions	kilotons- CO2e	 The calculation method is based on the Basic Guidelines regarding the Calculation of Greenhouse Gas Emissions throughout the Supply Chain (Ver. 2.2) and the Emission per Unit Database for the Purpose of Calculating the Greenhouse Gas and Other Emissions of Organizations throughout the Supply Chain (Ver. 2.2) (March 2015 Japan's Ministry of the Environment and Ministry of Economy, Trade and Industry) Resource extraction, production and transportation for fuels used to generate electricity Calculation for fuels used to generate electricity 		
			purchased Disposal of waste generated at business sites	[Calculation formula] [Calculation scope]	Σ [Amount of waste discharge by type x CO2 emissions per unit] Waste generated at business sites (Japan and overseas)
			166	[Calculation	

Employee business travels	formula]	Σ [transportation expenses paid by method of transport x CO ² emissions per unit] Transportation expenses for each method of travel for a portion of the overseas subsidiaries (45 sites) are estimated by multiplying the net sales of the subsidiaries in each of the regions and countries mentioned by the ratio of transportation expenses for each method of travel included in the net sales of major subsidiaries in Europe, North America, Asia and China.
	scope]	The amount of transportation expenses paid for airline tickets (Japan and overseas) and railway tickets (Japan and overseas)
Construction and Manufacturing of capital goods such as equipment	[Calculation formula] [Calculation scope]	 Σ [Equipment investment amount x CO2 emissions per unit] Equipment investment (Japan and overseas)
167	[Calculation formula]	Σ [fuel consumption per hour x annual hours of use x years of life span* x per-unit heat value of each fuel x CO ² emission coefficient of each fuel]

			Product usage	* Calculation assuming fuel consumption per hour, annual hours of use and years of life span per product [Calculation scope] Agricultural machinery (tractors, rice transplanters, combine harvesters) and construction machinery (mini backhoe, etc.)
Waste- related	Amount of waste, etc. discharge	tons	[Calculation formula] •	Sales of valuable resources + amount of waste discharge
	Amount of waste discharge	tons		Amount of waste recycled and waste reduction + landfill disposal Amount of industrial waste discharge + amount of general waste discharged from business activities
	Amount of landfill disposal	tons	[Calculation formula] •	Direct landfill + final landfill following external intermediate treatment
	Recycling ratio	%	[Calculation formula] •	(Sales of valuable resources + external recycling volume) ÷ (Sales of valuable resources + external recycling volume + amount of landfill disposal) x 100 [External recycling volume includes heat recovery]
	Amount of construction waste, etc. discharge	tons		Amount of construction waste discharge (Including construction waste other than specific construction materials) + sales of valuable resources (generated from construction) (covers directly contracted companies that buy valuable materials from the KUBOTA Group)
			[Calculation scope] • 168	Japan

	Recycling ratio of construction waste	%	[Calculation formula]	 [Sales of valuable resources + resource recycling + amount reduced (including heat recovery)] / amount of construction waste, etc. discharge (including sales of valuable resources) x 100
Water- related	Water consumption	m³	[Calculation formula]	• Total amount of service water, industrial water and groundwater consumption
	Wastewater discharge (public water areas, sewage lines)	M ³	[Calculation formula]	 Total wastewater discharge to public water areas and sewage lines (including rain and spring water)
	Amount of COD, nitrogen and phosphorus discharge	tons	[Calculation formula]	 COD, nitrogen or phosphorous concentration (mg/L) x amount of effluent discharged to public water area (m³) x 10⁻
			[Calculation scope]	Business sites subject to total emission control in Japan
	Amount of recycled water	m³	[Calculation formula]	 Amount of water purified in on-site effluent treatment facilities and recycled (excluding the circulating cooling water used)
Chemical substance- related	Amount of PRTR- designated substances handled	tons	[Calculation formula]	 Total amount of chemical substances handled, which are designated as Class I under the Act on Confirmation, etc. of Release Amounts of Specific Chemical Substances in the Environment and Promotion of Improvements to the Management Thereof (the PRTR Law) whose amount handled by each business site is one ton or more (or 0.5 ton or more for Specific Class I Designated Chemical Substances) per year

		[Calculation scope]	 Business sites in Japan (business sites subject to legal notification only) After FY2013 data includes designated chemical substances derived from recycl resources in accordance revisions to the Manual for PRTR Release Estimation Methods in the Steel Industry (Ver. 12 FY2013 use)
Amount of PRTR- designated substances released and transferred	tons	[Calculation formula]	 Total release and transfer amount of the chemical substances which are designate as Class I under the PRTR Law and whose annual total amount handled by each business site is one ton or more (or 0.5 thor more in case of Specific Class I Designated Chemical Substances). Amount released = amount discharged to public water areas + amount discharged to public water areas + amount discharged soil + amount disposed of by landfill in the premises of the business site Amount transferred = amount discharged to sewerage + amount transferred out of the business site as waste The amount of each substance released and transferred is calculated in accordare with Manual for PRTR Release Estimation Methods Ver. 4.1 (March 2011) of the Japan's Ministry of the Environment and the Ministry of Economy, Trade and Industry, and Manual for PRTR Release Estimation Methods in the Steel Industry Ver. 13 (March 2014) of the Japan Iron and Steel Federation.
Amount of	tons	[Calculation	of PRTR-designated substances handled
chemical	LOUIS	formula]	• Total amount of xylene; toluene;

substances (VOC) handled		[Calculation scope]	 ethylbenzene; styrene; 1, 2, 4- trimethylbenzene; 1, 3, 5- trimethylbenzene Overseas Xylene; toluene; ethylbenzene; styrene; 1, 2, 4-trimethylbenzene; 1, 3, 5- trimethylbenzene that are at each site handled in amounts of one ton or more per year
VOC emissions	tons	[Calculation formula] [Calculation scope]	 The total emissions of xylene; toluene; ethylbenzene; styrene; 1, 2, 4- trimethylbenzene; 1, 3, 5- trimethylbenzene Japan and overseas Xylene; toluene; ethylbenzene; styrene; 1, 2, 4-trimethylbenzene; 1, 3, 5- trimethylbenzene that are at each site handled in amounts of one ton or more per year
SOx emissions	tons	[Calculation formula]	• Amount of fuel consumed (kg) x sulfur content in the fuel (Wt %) \div 100 x 64 \div 32 x [(1 - desulphurization efficiency) \div 100] x 10 ⁻³ , or amount of SOx emitted per hour (m ³ N/h) x annual operation hours of the relevant facility (h) x 64 \div 22.4 x 10 ⁻³ , or SOx emission concentration (ppm) x annual exhaust gas from facilities (m ³ N/y) x 64 \div 22.4 x 10 ⁻⁹ , or SOx emission concentration (mg/m ³ N) x annual exhaust gas from facilities (m ³ N/y) x 10 ⁻⁹
		[Calculation scope]	• Smoke and soot generating facilities at business sites in Japan as defined by the Air Pollution Control Law, and facilities at overseas business sites covered in laws and regulations.

NOx emissions	tons	[Calculation formula] [Calculation scope]	 NOx concentration (ppm) x 10⁻⁶ x amount of gas emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 46 ÷ 22.4 x 10⁻³ The same calculation scope as that for SOx emissions
Soot and dust emissions	tons	[Calculation formula]	 Soot and dust concentration (g/m³N) x amount of gas emitted per hour (m³N/h) x annual operation hours of the relevant facility (h) x 10⁻⁶
		[Calculation scope]	• The same calculation scope as that for SOx emissions.

Third-party Assurance of Environmental Report

Since FY2005, the KUBOTA Group has received third-party assurance for the purpose of improving the reliability and comprehensiveness of its environmental data. Based on the third-party assurance obtained this fiscal year, the KUBOTA REPORT 2015 (Full Report PDF Version), received the Environmental Report Assurance and Registration Symbol of the Japanese Association of Assurance Organizations for Sustainability Information (J-SUS)*. This symbol indicates that information provided has been confirmed by a third party and that the reliability of the environmental data presented in the KUBOTA REPORT 2015 (Full Report PDF version) satisfies the requirements by J-SUS.

* http://www.j-sus.org/english.html

Environmental report assurance and registration mark

Factory visit

Kubota Manufacturing of America Corp.

Kubota Precision Machinery Co., Ltd.

KPING

Independent Assurance Report

To the President and Representative Director of KUBOTA Corporation

We were engaged by KUBOTA Corporation (the "Company") to undertake a limited assurance engagement of the environmental performance indicators marked with " \mathcal{P} " for the period from April 1, 2014 to March 31, 2015 (the "Indicators") included in its KUBOTA REPORT 2015 - Business and CSR Activities (Full Report PDF version) (the "Report") for the fiscal year ended March 31, 2015, and the completeness of material environmental information in the Report.

The Company's Responsibility

The Company is responsible for the preparation of the Indicators in accordance with its own reporting criteria (the The Company is responsible for the preparation of the material secondards with accordance with its own reporting criterial, is a described in the Report, which are derived, among others, from the Sustainability Reporting Guidelines version 3.1 of the Global Reporting Initiative and Environmental Reporting Guidelines of Japan's Ministry of the Environment, and for including the material environmental information defined in the 'Environmental Reporting Association of Assurance and Registration Criteria' of the Japanese Association of Assurance Organizations for Sustainability Information ("J-SUS") in the Report.

Our Responsibility

Our Responsibility Our responsibility is to express a limited assurance conclusion on the Indicators based on the procedures we have performed. We conducted our engagement in accordance with 'International Standard on Assurance Engagements (ISAE) 3000, Assurance Engagements on ther than Audits or Reviews of Historical Financial Information', 'ISAE 3410, Assurance Engagements on Greenhouse Cas Statement', issued by the International Auditing and Assurance Standards Board, and the 'Practical Guidelines for the Assurance of Sustainability Information' of J-SUS. The limited assurance engagement Practical Guidelines for the Assurance of Sustainability Information' of J-SUS. The limited assurance engagement consisted of making inquiries, primarily of persons responsible for the preparation of information presented in the Report, and applying analytical and other procedures; and the procedures ranker performed vary in nature from, and are less in extent than for, a reasonable assurance engagement. The level of assurance provided is thus not as high as that provided by a reasonable assurance engagement. Our assurance procedures included:
Interviewing with the Company's reporting criteria.
Inquiring about the design of the systems and methods used to collect and process the Indicators.
Performing analytical reviews of the Indicators.
Examing, on a test basis, evidence supporting the generation, aggregation and reporting of the Indicators in conformity with the Company's reporting criteria, and also recalculating the Indicators in conformity with the Company's used and also recalculating the Indicators.
Visiting to the Company's 2 subsidiaries selected on the basis of a risk analysis.
Assessing whether or not all the material environmental information defined by J-SUS is included in the Report.
Evaluating the overall statement in which the Indicators are expressed.

Conclusion Based on the procedures performed, as described above, nothing has come to our attention that causes us to believe that the Indicators in the Report are not prepared, in all material respects, in accordance with the Company's reporting criteria as described in the Report, and all the material environmental information defined by J-SUS is not included in the Report.

Our Independence and Quality Control

Our independence and during control we have completed with the Code of Ethtics for Professional Accountants issued by the International Ethics Standards Board for Accountants, which includes independence and other requirements founded on fundamental principles of integrity. objectivity, professional competence and due care, confidentiality and professional behavior. In accordance with International Standard on Quality Control 1, we maintain a comprehensive system of quality control including documented policies and procedures regarding compliance with ethical requirements, professional standards and applicable legal and regulatory requirements

KPMG AZSA Sustanablity Co., Ltd KPMG AZSA Sustainability Co., Ltd. Osaka, Japan August 11, 2015